We study the stochastic thermodynamics of an overdamped harmonic chain, which can be viewed equivalently as a one-dimensional Rouse chain or as an approximate model of single file diffusion. We discuss mainly two levels of description of this system: the Markovian level for which the trajectories of all the particles of the chain are known and the non-Markovian level in which only the motion of a tagged particle is available. For each case, we analyze the energy dissipation and its dependence on initial conditions. Surprisingly, we find that the average coarse-grained entropy production rate can become transiently negative when an oscillating force is applied to the tagged particle. This occurs due to memory effects as shown in a framework based on path integrals or on a generalized Langevin equation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.91.022114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!