A highly robust immobilized [Cp*IrCl2]2 precatalyst on Wang resin for transfer hydrogenation, which can be recycled up to 30 times, was studied using a novel combination of X-ray absorption spectroscopy (XAS) at Ir L3-edge, Cl K-edge, and K K-edge. These culminate in in situ XAS experiments that link structural changes of the Ir complex with its catalytic activity and its deactivation. Mercury poisoning and "hot filtration" experiments ruled out leached Ir as the active catalyst. Spectroscopic evidence indicates the exchange of one chloride ligand with an alkoxide to generate the active precatalyst. The exchange of the second chloride ligand, however, leads to a potassium alkoxide-iridate species as the deactivated form of this immobilized catalyst. These findings could be widely applicable to the many homogeneous transfer hydrogenation catalysts with Cp*IrCl substructure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja512868aDOI Listing

Publication Analysis

Top Keywords

robust immobilized
8
x-ray absorption
8
absorption spectroscopy
8
transfer hydrogenation
8
chloride ligand
8
activation deactivation
4
deactivation robust
4
immobilized cp*ir-transfer
4
cp*ir-transfer hydrogenation
4
hydrogenation catalyst
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!