We experimentally and numerically investigate the spectral and temporal structure of mid-infrared (mid-IR) filaments in bulk dielectrics with normal and anomalous group velocity dispersion (GVD) pumped by a 2.1 μm optical parametric chirped-pulse amplifier (OPCPA). The formation of stable and robust filaments with several microjoules of pulse energy is observed. We demonstrate a supercontinuum that spans more than three octaves from ZnS in the normal GVD regime and self-compression of the mid-IR pulse to sub-two-cycle duration in CaF in the anomalous GVD regime. The experimental observations quantitatively agree well with the numerical simulations based on a three-dimensional nonlinear wave equation that reveals the detailed spatio-temporal dynamics of mid-IR filaments in dielectrics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.40.001069 | DOI Listing |
Micromachines (Basel)
December 2024
School of Integrated Circuit, Southeast University, Nanjing 210096, China.
Aluminum nitride (AlN) with a wide band gap (approximately 6.2 eV) has attractive characteristics, including high thermal conductivity, a high dielectric constant, and good insulating properties, which are suitable for the field of resistive random access memory. AlN thin films were deposited on ITO substrate using the radio-frequency magnetron sputtering technique.
View Article and Find Full Text PDFBeilstein J Nanotechnol
December 2024
Centro de Investigaciones en Dispositivos Semiconductores (CIDS-ICUAP), Benemérita Universidad Autónoma de Puebla (BUAP). Col. San Manuel, Cd. Universitaria, Av. San Claudio y 14 sur, Edif. IC5 y IC6. Puebla, Pue., 72507 México.
In this study, a simulation of the elementary chemical reactions during SiO film growth in a hot filament chemical vapor deposition (HFCVD) reactor was carried out using a 2D model. For the 2D simulation, the continuity, momentum, heat, and diffusion equations were solved numerically by the software COMSOL Multiphysics based on the finite element method. The model allowed for the simulation of the key parameters of the HFCVD reactor.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Max-Planck-Institute for Solid State Research, 70569 Stuttgart, Germany.
Sci Rep
December 2024
Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France.
ACS Appl Mater Interfaces
December 2024
Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!