Spontaneous chemoport fracture and cardiac migration.

Indian J Surg Oncol

Department of cardiology, Sms hospital jaipur, Jaipur, Rajasthan India.

Published: December 2014

Central venous access devices are routinely used in oncology for delivering chemotherapy of which implantable chemoports are the most common. Spontaneous breakage and migration of the catheters is a very rare but known complication of the procedure. Patients will usually present with cardiac manifestations in form of chest pain or arrythmias. Herein we report a case of spontaneous breakage and cardiac migration in which the patient was asymptomatic. Patient was successfully managed by an interventional cardiologist.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354828PMC
http://dx.doi.org/10.1007/s13193-014-0353-0DOI Listing

Publication Analysis

Top Keywords

cardiac migration
8
spontaneous breakage
8
spontaneous chemoport
4
chemoport fracture
4
fracture cardiac
4
migration central
4
central venous
4
venous access
4
access devices
4
devices routinely
4

Similar Publications

Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.

View Article and Find Full Text PDF

Unlabelled: During vertebrate development, the heart primarily arises from mesoderm, with crucial contributions from cardiac neural crest cells that migrate to the heart and form a variety of cardiovascular derivatives. Here, by integrating bulk and single cell RNA-seq with ATAC-seq, we identify a gene regulatory subcircuit specific to migratory cardiac crest cells composed of key transcription factors and . Notably, we show that cells expressing the canonical neural crest gene are essential for proper cardiac regeneration in adult zebrafish.

View Article and Find Full Text PDF

We report on the design and fabrication of a novel circular pillar array as an interfacial barrier for microfluidic microphysiological systems ( ). Traditional barrier interfaces, such as porous membranes and microchannel arrays, present limitations due to inconsistent pore size, complex fabrication and device assembly, and lack of tunability using a scalable design. Our pillar array overcomes these limitations by providing precise control over pore size, porosity, and hydraulic resistance through simple modifications of pillar dimensions.

View Article and Find Full Text PDF

Umbilical cord-derived mesenchymal stromal cells: Promising therapy for heart failure.

World J Cardiol

January 2025

Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.

Heart failure (HF) is a complex syndrome characterized by the reduced capacity of the heart to adequately fill or eject blood. Currently, HF remains a leading cause of morbidity and mortality worldwide, imposing a substantial burden on global healthcare systems. Recent advancements have highlighted the therapeutic potential of mesenchymal stromal cells (MSCs) in managing HF.

View Article and Find Full Text PDF

Sodium-glucose cotransporter-2 (SGLT-2) inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules, consequently augmenting urinary glucose excretion and attenuating blood glucose levels. Extensive clinical investigations have demonstrated their profound cardiovascular efficacy. Parallel basic science research has elucidated the mechanistic pathways through which diverse SGLT-2 inhibitors beneficially modulate pulmonary vascular cells and arterial remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!