The Food-Associated Ribotoxin Deoxynivalenol Modulates Inducible NO Synthase in Human Intestinal Cell Model.

Toxicol Sci

*Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France, INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France, Université de Toulouse, INP, UMR1331, Toxalim, F-3100 Toulouse, France and Aix Marseille Université, CNRS, CRN2M UMR 7286, 13344, Marseille, France

Published: June 2015

The intestinal epithelium possesses active immune functions including the production of proinflammatory cytokines and antimicrobial molecules such as nitric oxide (NO). As observed with immune cells, the production of NO by the intestinal epithelium is mainly due to the expression of the inducible NO synthase (iNOS or NOS2). Epithelial immune functions could be affected by many factors including pathogenic microorganisms and food-associated toxins (bacterial and fungal). Among the various mycotoxins, deoxynivalenol (DON) is known to alter the systemic and intestinal immunity. However, little is known about the effect of DON on the production of NO by the intestinal epithelium. We studied the impact of DON on the intestinal expression of iNOS using the Caco-2 cell model. In line with its proinflammatory activity, we observed that DON dose-dependently up-regulates the expression of iNOS mRNA. Surprisingly, DON failed to increase the expression of iNOS protein. When testing the effects of DON on cytokine-mediated induction of iNOS, we found that very low concentrations of DON (ie, 1 µM) decrease the amount of iNOS protein but not of iNOS mRNA. We demonstrated that DON's effect on iNOS protein relies on its ability to activate signal pathways and to increase iNOS ubiquitinylation and degradation through the proteasome pathway. Taken together, our results demonstrate that although DON causes intestinal inflammation, it suppresses the ability of the gut epithelium to express iNOS and to produce NO, potentially explaining the increased susceptibility of animals to intestinal infection following exposure to low doses of DON.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfv058DOI Listing

Publication Analysis

Top Keywords

intestinal epithelium
12
expression inos
12
inos protein
12
inos
10
don
9
inducible synthase
8
intestinal
8
cell model
8
immune functions
8
production intestinal
8

Similar Publications

WNT4 promotes the symmetric fission of crypt in radiation-induced intestinal epithelial regeneration.

Cell Mol Biol Lett

December 2024

Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.

Background: Radiotherapy for pelvic malignant tumors inevitably causes intestinal tissue damage. The regeneration of intestinal epithelium after radiation injury relies mainly on crypt fission. However, little is known about the regulatory mechanisms of crypt fission events.

View Article and Find Full Text PDF

Objectives: To investigate the effects of asperosaponin VI (AVI) on intestinal epithelial cell apoptosis and intestinal barrier function in a mouse model of Crohn's disease (CD)-like colitis and explore its mechanisms.

Methods: Male C57BL/6 mice with TNBS-induced CD-like colitis were treated with saline or AVI (daily dose 150 mg/kg) by gavage for 6 days. The changes in body weight, colon length, DAI scores, and colon pathologies of the mice were observed, and the expressions of inflammatory factors and tight injunction proteins were detected using ELISA and RT-qPCR.

View Article and Find Full Text PDF

Propionate-functionalized chitosan hydrogel nanoparticles for effective oral delivery of insulin.

Int J Biol Macromol

December 2024

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China. Electronic address:

Oral delivery of macromolecular drugs is often hampered by the harsh gastrointestinal environment, which makes the drugs have poor bioavailability. Insulin, the most used drug for diabetes, also faces the same challenge for oral administration. Hence, we decorated microbial metabolite propionate on chitosan (CS) to fabricate insulin-loaded propionate-modified CS hydrogel nanoparticles (IN-CS/PA HNPs).

View Article and Find Full Text PDF

The gastrointestinal tract can be deranged by ailments including sepsis, trauma and haemorrhage. Ischaemic injury provokes a common constellation of microscopic and macroscopic changes that, together with the paradoxical exacerbation of cellular dysfunction and death following restoration of blood flow, are collectively known as ischaemia-reperfusion injury (IRI). Although much of the gastrointestinal tract is normally hypoxemic, intestinal IRI results when there is inadequate oxygen availability due to poor supply (pathological hypoxia) or abnormal tissue oxygen use and metabolism (dysoxia).

View Article and Find Full Text PDF

Intestinal Goblet Cell-Expressed Reg4 Ameliorates Intestinal Inflammation Potentially by Restraining Pathogenic Escherichia coli Infection.

Probiotics Antimicrob Proteins

December 2024

Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665, Kong Jiang Road, Shanghai, China.

An elevated abundance of Escherichia coli (E. coli) has been linked to the onset and progression of inflammatory bowel disease (IBD). Regenerating islet-derived family member 4 (Reg4) has been isolated from patients with ulcerative colitis (UC), but its functions and involved mechanisms in intestinal inflammation are remain incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!