A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitro-oleic acid attenuates OGD/R-triggered apoptosis in renal tubular cells via inhibition of Bax mitochondrial translocation in a PPAR-γ-dependent manner. | LitMetric

Background: Nitroalkene derivatives of oleic acid (OA-NO2) serve as high-affinity ligand for PPAR-γ, which regulates apoptosis, oxidation and inflammation and plays a central role in ischemia-reperfusion injury. In the present study, we elucidated the protective mechanisms of OA-NO2 against renal ischemia-reperfusion injury.

Methods: HK-2 cells were subjected to oxygen and glucose deprivation followed by re-oxygenation (OGD/R) to mimic renal ischemia-reperfusion injury. Cell apoptosis was analyzed by flow cytometry. Bax mitochondrial translocation, cytochrome c and apoptosis-inducing factor (AIF) cytosolic leakage and Akt/Gsk 3β phosphorylation were evaluated by Western blotting. Bax activation was visualized by immunocytochemistry. GW9662 and siRNA transfection were employed to examine the involvement of PPAR-γ.

Results: OGD/R injury promoted mitochondrial translocation and activation of Bax, leakage of cytochrome c and AIF, subsequent caspase-3 activation, and eventually cell apoptosis. Pre-incubation with OA-NO2 (1.25 µM, 45min) inhibited Bax activation and blocked apoptotic cascade, while the protective effects were negated by GW9662 or PPAR-γ siRNA. Moreover, OA-NO2 restored Akt and Gsk 3β phosphorylation in a PPAR-γ-dependent way.

Conclusion: These findings suggest that OA-NO2 attenuates OGD/R-induced apoptosis by inhibiting Bax translocation and activation and the subsequent mitochondria-dependent apoptotic cascade in a PPAR-γ dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000373944DOI Listing

Publication Analysis

Top Keywords

mitochondrial translocation
12
bax mitochondrial
8
ischemia-reperfusion injury
8
renal ischemia-reperfusion
8
cell apoptosis
8
3β phosphorylation
8
bax activation
8
translocation activation
8
apoptotic cascade
8
bax
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!