Purpose: Developing new blends of heavier-than-water silicone oil tamponade agents containing high molecular weight polydimethylsiloxane polymer for use in vitreoretinal surgery.

Materials And Methods: The viscoelastic properties of heavier-than-water silicone oil blends (30.5% F6H8 + 69.5% polydimethylsiloxane) containing high molecular weight polymer additive at increasing concentrations were measured using a controlled-stress rheometer (TA Instruments Rheolyst AR 1000 N). Emulsification of the blends was induced using a sonication device and a pluronic surfactant as a strong emulsifier. The percentage emulsion area was photographed and measured using ImageJ software. In a second in vitro emulsification assessment, silicone oil blends were dispersed using a high shear homogenizer and the oil-in-water droplets were counted using a coulter counter particle analyser.

Results: The addition of the high molecular weight polymer increased shear viscosity and viscoelasticity of the oil blends, which were measureable and to some extent predictable. The in vitro emulsification models produced contradictory results. This demonstrates the difficulty of designing and using in vitro models to evaluate the emulsification tendency of tamponade agents in vivo.

Conclusion: Addition of a high molecular weight polymer to heavy silicone oil can increase the viscoelasticity. These findings might contribute to the development of emulsification resistant heavy silicone oils.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328215575623DOI Listing

Publication Analysis

Top Keywords

high molecular
20
molecular weight
20
silicone oil
20
oil blends
12
weight polymer
12
development emulsification
8
emulsification resistant
8
heavier-than-water silicone
8
tamponade agents
8
vitro emulsification
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!