Background: Magnesium (Mg(2+)) is an essential ion for cell growth, neuroplasticity and muscle contraction. Blood Mg(2+) levels <0.7 mmol/L may cause a heterogeneous clinical phenotype, including muscle cramps and epilepsy and disturbances in K(+) and Ca(2+) homeostasis. Over the last decade, the genetic origin of several familial forms of hypomagnesaemia has been found. In 2000, mutations in FXYD2, encoding the γ-subunit of the Na(+)-K(+)-ATPase, were identified to cause isolated dominant hypomagnesaemia (IDH) in a large Dutch family suffering from hypomagnesaemia, hypocalciuria and chondrocalcinosis. However, no additional patients have been identified since then.

Methods: Here, two families with hypomagnesaemia and hypocalciuria were screened for mutations in the FXYD2 gene. Moreover, the patients were clinically and genetically characterized.

Results: We report a p.Gly41Arg FXYD2 mutation in two families with hypomagnesaemia and hypocalciuria. Interestingly, this is the same mutation as was described in the original study. As in the initial family, several patients suffered from muscle cramps, chondrocalcinosis and epilepsy. Haplotype analysis revealed an overlapping haplotype in all families, suggesting a founder effect.

Conclusions: The recurrent p.Gly41Arg FXYD2 mutation in two new families with IDH confirms that FXYD2 mutation causes hypomagnesaemia. Until now, no other FXYD2 mutations have been reported which could indicate that other FXYD2 mutations will not cause hypomagnesaemia or are embryonically lethal.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ndt/gfv014DOI Listing

Publication Analysis

Top Keywords

recurrent fxyd2
4
fxyd2 pgly41arg
4
pgly41arg mutation
4
mutation patients
4
patients isolated
4
isolated dominant
4
dominant hypomagnesaemia
4
hypomagnesaemia background
4
background magnesium
4
magnesium mg2+
4

Similar Publications

Expression mode and prognostic value of FXYD family members in colon cancer.

Aging (Albany NY)

July 2021

Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.

The FXYD gene family comprises seven members that encode a class of small-membrane proteins characterized by an FXYD motif and interact with Na/K-ATPase. Until now, the expression patterns and prognostic roles of the FXYD family in colon cancer (CC) have not been systematically reported. Gene expression, methylation, clinicopathological features and the prognoses of CC patients were obtained from The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

Ovarian clear cell carcinoma (OCCC) is an aggressive neoplasm with a high recurrence rate that frequently develops resistance to platinum-based chemotherapy. There are few prognostic biomarkers or targeted therapies exist for patients with OCCC. Here, we identified that FXYD2, the modulating subunit of Na+/K+-ATPases, was highly and specifically expressed in clinical OCCC tissues.

View Article and Find Full Text PDF

Background: Magnesium (Mg(2+)) is an essential ion for cell growth, neuroplasticity and muscle contraction. Blood Mg(2+) levels <0.7 mmol/L may cause a heterogeneous clinical phenotype, including muscle cramps and epilepsy and disturbances in K(+) and Ca(2+) homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!