A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Involvement of microsomal NADPH-cytochrome P450 reductase in metabolic reduction of drug ketones. | LitMetric

Involvement of microsomal NADPH-cytochrome P450 reductase in metabolic reduction of drug ketones.

Biopharm Drug Dispos

Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Germany.

Published: September 2015

Recently, it was found that the carbonyl group of 1-[3-(4-phenoxyphenoxy)-2-oxopropyl]indole-5-carboxylic acid (5), an inhibitor of the pro-inflammatory enzyme cytosolic phospholipase A α, is easily reduced by rat liver S9 fractions in vitro. Determination of the inhibitory potency of certain putative inhibitors of carbonyl reducing enzymes on the transformation of the ketone derivative 5 to its alcohol 6 by recombinant microsomal NADPH-cytochrome P450 reductase and by recombinant cytosolic carbonyl reductase-1 now reveals that these compounds show a lack of specificity for these two enzymes in part. Thus, an assignment of the roles of different carbonyl reductases in metabolic keto reduction by the use of inhibitors is problematic. In addition, the ability of NADPH-cytochrome P450 reductase and carbonyl reductase-1 to reduce the ketone groups of the drugs haloperidol and daunorubicin was examined. Under the conditions applied, a pronounced reductive metabolism was only observed for daunorubicin in the presence of microsomal NADPH-cytochrome P450 reductase. Similarly, in rat liver S9 fractions a marked reduction of daunorubicin was seen, while haloperidol was only slightly metabolized to its alcohol. After separation of the S9 homogenate into a microsomal and a cytosolic fraction, it became evident that the ketone groups of daunorubicin, haloperidol and compound 5 were mainly reduced by cytosolic enzymes. However, since microsomes also catalysed these carbonyl reductions to some extent, it can be concluded that microsomal NADPH-cytochrome P450 reductase can contribute to metabolic keto reductions in xenobiotics. Copyright © 2015 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bdd.1946DOI Listing

Publication Analysis

Top Keywords

nadph-cytochrome p450
20
p450 reductase
20
microsomal nadph-cytochrome
16
rat liver
8
liver fractions
8
carbonyl reductase-1
8
metabolic keto
8
ketone groups
8
daunorubicin haloperidol
8
carbonyl
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!