Highly effective adsorption of cationic and anionic dyes on magnetic Fe/Ni nanoparticles doped bimodal mesoporous carbon.

J Colloid Interface Sci

College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China.

Published: June 2015

Magnetic Fe/Ni nanoparticles doped bimodal mesoporous carbon (MBMC) was prepared for highly effective adsorption of cationic dye methylene blue (MB) and anionic dye methyl orange (MO). Structure characterization demonstrated that Fe/Ni nanoparticles were embedded into the interior of the mesoprous carbon, and MBMC maintained ordered and bimodal mesopores. The effects of several parameters such as contact time, pH, temperature, ionic strength and dye molecular structure on the adsorption were investigated. Alkaline pH was better for MB adsorption, while acidic pH was more favorable for MO uptake. The adsorption capacity was slightly enhanced when existing ion concentrations increased. Adsorption on MBMC was affected by the molecular structures of different dyes, and both primary and secondary pores of MBMC were involved in dye adsorption. The adsorption kinetics fitted well with pseudo-second-order model and exhibited 3-stage intraparticle diffusion mode. Equilibrium data were best described by Langmuir model, and the estimated maximum adsorption capacity for MB and MO was 959.5mg/g and 849.3mg/g, respectively. Thermodynamic studies indicated that the adsorption process was spontaneous and endothermic. Moreover, the adsorbent could be regenerated using ethanol, and the regenerated adsorbent after seven cycles could retain over 80% of the adsorption capacity for the fresh adsorbent. The results suggested that MBMC could be considered as very effective and promising materials for both anionic and cationic dyes removal from wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2015.02.037DOI Listing

Publication Analysis

Top Keywords

fe/ni nanoparticles
12
adsorption capacity
12
adsorption
11
highly effective
8
effective adsorption
8
adsorption cationic
8
magnetic fe/ni
8
nanoparticles doped
8
doped bimodal
8
bimodal mesoporous
8

Similar Publications

Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.

View Article and Find Full Text PDF

FeO/Ni nanoparticles anchored nitrogen-doped porous carbon derived from core-shell MOF for simultaneous electrochemical detection of dopamine and 5-hydroxytryptamine.

Talanta

January 2025

Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China. Electronic address:

Pre-designed core-shell metal-organic frameworks (MOFs@MOFs) with customized functionalities can enhance the material properties compared to conventional single MOFs. The porous carbon composites derived from MOFs@MOFs also have excellent functionality due to the presence of multiple metal/metal oxide nanoparticles. This paper synthesized a novel MOFs@MOFs composite (MIL-101(Fe)@Ni-MOF) with a core-shell structure with MIL-101(Fe) as the core and Ni-MOF as the shell.

View Article and Find Full Text PDF

Fe-Doped Ni-Based Catalysts Surpass Ir-Baselines for Oxygen Evolution Due to Optimal Charge-Transfer Characteristics.

ACS Catal

December 2024

Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States.

Ni-based catalysts with Co or Fe can potentially replace precious Ir-based catalysts for the rate-limiting oxygen evolution reaction (OER) in anion-exchange membrane (AEM) electrolyzers. In this study, density functional theory (DFT) calculations provide atomic- and electronic-level resolution on how the inclusion of Co or Fe can overcome the inactivity of NiO catalysts and even enable them to surpass IrO in activating key steps to the OER. Namely, NiO resists binding the key OH* intermediate and presents a high energetic barrier to forming the O*.

View Article and Find Full Text PDF

Selective aptasensor of deoxynivalenol based on dual signal enhancement of thionine electrochemistry using silver nanoparticle-loaded label at gold nanoparticle-loaded electrodes.

Bioelectrochemistry

December 2024

School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China. Electronic address:

In this work, an efficient sensing platform deoxynivalenol (DON) detection was constructed through monitoring the current change of a competitive mechanism triggered by DON, leading the signal label detached from the electrode surface by square-wave voltammetry using thionine (Thi) as a redox indicator. The complementary strand of aptamer (cDNA) and Thi were loaded onto Fe/Ni bimetallic metal-organic framework loaded with sliver nanoparticles (AgNPs@FeNi-MOF) to construct AgNPs@FeNi-MOF/cDNA/Thi signal probes. In the presence of DON, the aptamer sequence was more predisposed to form an aptamer-DON complex, resulting in the displacement of the cDNA.

View Article and Find Full Text PDF

Conventional inorganic semiconductors are not suitable for acting as nanozymes or sonosensitizers for therapeutic nanomedicine owing to the lack of excellent biocompatibility. Biocompatible carbon dots (CDs) exhibit a variety of biological activities due to their adjustable size and surface chemical modification; however, the simultaneous sonodynamic activity and multiple enzyme-mimicking catalytic activity of a single CD have not been reported. Herein, we report the development of bimetallic doped CDs as a high-efficiency nanozyme and sonosensitizer for enhanced sonodynamic therapy (SDT) and nanocatalytic therapy (NCT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!