Comparative toxicity of copper nanoparticles across three Lemnaceae species.

Sci Total Environ

Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands; National Institute for Public Health and the Environment, Bilthoven, The Netherlands.

Published: June 2015

Metallic nanoparticles can end up in aquatic ecosystems due to their widespread application. Even though the toxicological effects of metallic nanoparticles to a diversity of species have been reported extensively, the toxicological data achieved in different studies are not always comparable and little is known regarding the comparative toxicity of nanoparticles across species, as different test strategies and endpoints were applied. To attempt to fill this knowledge gap, Spirodela polyrhiza, Lemna minor and Wolffia arrhiza were exposed to 25 nm spherical copper nanoparticles to investigate the inhibiting effect of copper nanoparticle suspensions across species at three endpoints: total frond area, frond number and dry weight based relative growth rate. The total frond area based relative growth rate was found to be the most sensitive endpoint, with an EC50 of 1.15±0.09 mg/L for S. polyrhiza, 0.84±0.12 mg/L for L. minor and 0.64±0.05 mg/L for W. arrhiza. Both the particles and the copper ions contributed to the inhibiting effects of copper nanoparticle suspensions at all endpoints studied. Dose-response related inhibiting effects caused by the copper ions were found at all endpoints studied, whereas the particles only showed dose-response related inhibiting effects on the total frond area based relative growth rate. This suggests that different physiological processes are involved in case of exposure to particles and copper ions. W. arrhiza was found to be the most sensitive species tested and S. polyrhiza was the least sensitive species tested, when the inhibiting effect was evaluated based on the relative growth rate calculated from total frond area. These findings exemplify the importance of identifying the suitable endpoints of toxicity assessment and considering the intrinsic differences between species when evaluating the toxicological profile of metallic nanoparticles across species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2015.02.079DOI Listing

Publication Analysis

Top Keywords

total frond
16
frond area
16
based relative
16
relative growth
16
growth rate
16
metallic nanoparticles
12
copper ions
12
inhibiting effects
12
comparative toxicity
8
copper nanoparticles
8

Similar Publications

Recruitment of copiotrophic and autotrophic bacteria by hyperaccumulators enhances nutrient cycling to reclaim degraded soils at abandoned rare earth elements mining sites.

J Hazard Mater

January 2025

Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350117, China. Electronic address:

Hyperaccumulators harbor potentials for remediating rare earth elements (REEs)-contaminated soils. However, how they thrive in low-nutrient abandoned REEs mining sites is poorly understood. Three ferns (REEs-hyperaccumulators Dicranopteris pedata and Blechnum orientale, and non-hyperaccumulator Pteris vittata) along with their rhizosphere soils were collected to answer this question by comparing differences in soil nutrient levels, soil and plant REEs concentrations, and bacterial diversity, composition, and functions.

View Article and Find Full Text PDF

Nontyphoidal is a common cause of gastroenteritis but can also lead to bacteremia and extraintestinal infections, including meningitis (more frequent in children and infants), endovascular infections (e.g., endocarditis and infected aneurysms), urinary tract infections, and bone or bone marrow infections (e.

View Article and Find Full Text PDF

D1-104/3 and C31-106/3 differentially modulate the antioxidative response of duckweed ( L.) to salt stress.

Front Microbiol

December 2024

Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Article Synopsis
  • Duckweed is a valuable model for studying plant responses to stress, specifically focusing on how bacterial strains D1-104/3 and C31-106/3 influence growth and stress responses under salt stress (10 and 100 mM NaCl).
  • The experiment measured various physiological parameters after 14 days, revealing that both bacterial strains colonized duckweeds and affected growth differently, with C31-106/3 showing a longer doubling time but reducing chlorosis.
  • Results indicated that both bacterial strains enhanced antioxidant capacity and reduced oxidative stress, with significant differences in their impacts on proline, chlorophyll, and enzyme activities, particularly at higher salt concentrations.
View Article and Find Full Text PDF

Transgenerational Plasticity Enhances the Tolerance of Duckweed () to Stress from Exudates of .

Int J Mol Sci

December 2024

Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.

Transgenerational plasticity (TGP) refers to the influence of ancestral environmental signals on offspring's traits across generations. While evidence of TGP in plants is growing, its role in plant adaptation over successive generations remains unclear, particularly in floating plants facing fluctuating environments. Duckweed (), a common ecological remediation material, often coexists with the harmful bloom-forming cyanobacterium , which releases a highly toxic exudate mixture (MaE) during its growth.

View Article and Find Full Text PDF

causes rachis blight on coconut palms ( L.) in Florida.

Plant Dis

December 2024

University of Florida, Department of Plant Pathology, 3205 College Ave, Fort Lauderdale Research and Education Center, Davie, Florida, United States, 33314.

, a genus in the family Botryosphaeriaceae, has a broad host range and causes dieback, root rot, fruit rot, leaf rot, and blights in many plant species across sub-tropical and tropical geographical areas (Alves et al., 2008). In palms, this fungal pathogen is known to cause fruit and heart rot, wood decay and leaf blight around the globe (Atallah et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!