A variety of asymmetrically donor-acceptor-substituted [3]cumulenes (buta-1,2,3-trienes) were synthesized by developed procedures. The activation barriers to rotation ΔG(≠) were measured by variable temperature NMR spectroscopy and found to be as low as 11.8 kcal mol(-1) , in the range of the barriers for rotation around sterically hindered single bonds. The central C=C bond of the push-pull-substituted [3]cumulene moiety is shortened down to 1.22 Å as measured by X-ray crystallography, leading to a substantial bond length alternation (BLA) of up to 0.17 Å. All the experimental results are supported by DFT calculations. Zwitterionic transition states (TS) of bond rotation confirm the postulated proacetylenic character of donor-acceptor [3]cumulenes. Additional support for the proacetylenic character of these chromophores is provided by their reaction with tetracyanoethene (TCNE) in a cycloaddition-retroelectrocyclization (CA-RE) cascade characteristic of donor-polarized acetylenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201406583 | DOI Listing |
Organometallics
December 2024
Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
stabilization of known, but solution unstable, methylidene complex [Ir(Bu-PONOP)(=CH)][BAr ] allows single-crystal to single-crystal solid/gas reactivity associated with the {Ir=CH} group to be studied. Addition of H results in [Ir(Bu-PONOP)(H)][BAr ]; exposure to CO forms iridium(I) carbonyl [Ir(Bu-PONOP)(CO)][BAr ], and reaction with NH gas results in the formation of methylamine complex [(Bu-PONOP)Ir(NHMe)][BAr ] via an aminocarbene intermediate. Periodic density functional theory and electronic structure analyses confirm the Ir=CH bond character but with a very low barrier to rotation around the Ir=CH bond.
View Article and Find Full Text PDFThermal-induced transitions between multistable states hold significant interest in stochastic thermodynamics and dynamical control with nanomechanical systems. Here, we study kinetic-energy-dependent over-barrier behaviors in the rotational degree of freedom of silica nanodumbells in tilted periodic potentials. In the rotational degree of freedom, nanodumbbells can undergo critical transitions between librations and rotations as the ellipticity of the trapping laser field changes.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
The rotational spectra of a mixture of 2,4-pentanediol (PDL) isomers, comprising both the meso isomers [(2R, 4S) and (2S, 4R)] and the racemic isomers [(2R, 4R) and (2S, 4S)], were recorded using a chirped-pulse Fourier transform microwave spectrometer coupled to a supersonic jet expansion. The conformational landscapes of meso- and racemic-PDL were examined using the Conformer-Rotamer Ensemble Sampling Tool and high-level quantum chemical calculations, generating 26 and 25 conformers, respectively. Five sets of rotational transitions were observed and assigned, with two attributed to meso-PDL and the remaining three attributed to racemic-PDL.
View Article and Find Full Text PDFMedEdPORTAL
December 2024
Associate Professor, Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center.
Introduction: Mental health and substance use disorders are common in the United States; however, only a portion of adults with these conditions receive treatment. Recent recommendations include using integrated behavioral health (IBH) models to increase patient access to care. Despite IBH's effectiveness, few psychiatry residents are trained in it.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.
Aqueous solubilization of porphyrins, often accomplished with appended polar aryl groups, can also be achieved with symmetrically branched alkyl (i.e., swallowtail) groups terminated with polar moieties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!