Lipase (EC 3.1.1.3) stands amongst the most important and promising biocatalysts for industrial applications. In this study, in order to realize a high-level expression of the Yarrowia lipolytica lipase gene in Pichia pastoris, we optimized the codon of LIP2 by de novo gene design and synthesis, which significantly improved the lipase expression when compared to the native lip2 gene. We also comparatively analyzed the effects of the promoter types (PAOX1 and PFLD1) and the Pichia expression systems, including the newly developed PichiaPink system, on lipase production and obtained the optimal recombinants. Bench-top scale fermentation studies indicated that the recombinant carrying the codon-optimized lipase gene syn-lip under the control of promoter PAOX1 has a significantly higher lipase production capacity in the fermenter than other types of recombinants. After undergoing methanol inducible expression for 96h, the wet cell weight of Pichia, the lipase activity and the protein content in the fermentation broth reached their highest values of 262g/L, 38,500U/mL and 2.82g/L, respectively. This study has not only greatly facilitated the bioapplication of lipase in industrial fields but the strategies utilized, such as de novo gene design and synthesis, the comparative analysis among promoters and different generations of Pichia expression systems will also be useful as references for future work in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.enzmictec.2014.10.007DOI Listing

Publication Analysis

Top Keywords

lipase
9
yarrowia lipolytica
8
lipolytica lipase
8
pichia pastoris
8
lipase gene
8
novo gene
8
gene design
8
design synthesis
8
pichia expression
8
expression systems
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!