A new rhizosphere soil bacterium that exhibits antimicrobial potential against human pathogens was isolated. On the basis of 16S ribosomal RNA nucleotide sequence homology and subsequent phylogenetic tree analysis, the strain PUW5 was identified as Pseudomonas putida. A bioactive metabolite was extracted and purified using silica gel column chromatography and preparative HPLC. Characterization of metabolite was done by employing Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and mass spectroscopy (MS). On the basis of spectroscopic data, the metabolite was structurally elucidated as 5-methyl phenazine-1-carboxylic acid betaine (MPCAB). The MPCAB exhibits selective cytotoxicity towards lung (A549) and breast (MDA MB-231) cancer cell lines in dose-dependent manner with IC50 value of 488.7±2.52 nM and 458.6±2.48 nM respectively. The MPCAB exhibited inhibition of cell viability, DNA synthesis, induced G1 cell cycle arrest and apoptosis in cancer cells. The docking and interaction studies confirmed the binding potential of MPCAB with Bcl-2 than Bcl-xL and Bcl-w proteins. These results strongly suggest that the MPCAB induces apoptosis in A549 and MDA MB-231 cancer cells through mitochondrial intrinsic pathway via activation of caspase-3 and down regulation of Bcl-2 protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2015.03.002DOI Listing

Publication Analysis

Top Keywords

5-methyl phenazine-1-carboxylic
8
phenazine-1-carboxylic acid
8
bioactive metabolite
8
rhizosphere soil
8
soil bacterium
8
bacterium exhibits
8
mda mb-231
8
mb-231 cancer
8
cancer cells
8
mpcab
5

Similar Publications

Pyocyanin biosynthesis protects Pseudomonas aeruginosa from nonthermal plasma inactivation.

Microb Biotechnol

June 2022

Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China.

Pseudomonas aeruginosa is an important opportunistic human pathogen, which raises a worldwide concern for its increasing resistance. Nonthermal plasma, which is also called cold atmospheric plasma (CAP), is an alternative therapeutic approach for clinical infectious diseases. However, the bacterial factors that affect CAP treatment remain unclear.

View Article and Find Full Text PDF

Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens whose interactions involve the secreted products ethanol and phenazines. Here, we describe the role of ethanol in mixed-species co-cultures by dual-seq analyses. P.

View Article and Find Full Text PDF

A new rhizosphere soil bacterium that exhibits antimicrobial potential against human pathogens was isolated. On the basis of 16S ribosomal RNA nucleotide sequence homology and subsequent phylogenetic tree analysis, the strain PUW5 was identified as Pseudomonas putida. A bioactive metabolite was extracted and purified using silica gel column chromatography and preparative HPLC.

View Article and Find Full Text PDF

Pseudomonas aeruginosa produces several phenazines including the recently described 5-methyl-phenazine-1-carboxylic acid (5MPCA), which exhibits a novel antibiotic activity towards pathogenic fungi such as Candida albicans. Here we characterize the unique antifungal mechanisms of 5MPCA using its analogue phenazine methosulphate (PMS). Like 5MPCA, PMS induced fungal red pigmentation and killing.

View Article and Find Full Text PDF

Crystal structure of the pyocyanin biosynthetic protein PhzS.

Biochemistry

May 2008

Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, National Institute of Standards and Technology, 9600 Gudelsky Drive Rockville, Maryland 20850, USA.

The human pathogen Pseudomonas aeruginosa produces pyocyanin, a blue-pigmented phenazine derivative, which is known to play a role in virulence. Pyocyanin is produced from chorismic acid via the phenazine pathway, nine proteins encoded by a gene cluster. Phenazine-1-carboxylic acid, the initial phenazine formed, is converted to pyocyanin in two steps that are catalyzed by the enzymes PhzM and PhzS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!