A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distinct composition signatures of archaeal and bacterial phylotypes in the Wanda Glacier forefield, Antarctic Peninsula. | LitMetric

Distinct composition signatures of archaeal and bacterial phylotypes in the Wanda Glacier forefield, Antarctic Peninsula.

FEMS Microbiol Ecol

Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 - Agronomia, Porto Alegre - RS, 91501-970, Brazil Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752 - Azenha, Porto Alegre - RS, 90610-000, Brazil.

Published: January 2015

Several studies have shown that microbial communities in Antarctic environments are highly diverse. However, considering that the Antarctic Peninsula is among the regions with the fastest warming rates, and that regional climate change has been linked to an increase in the mean rate of glacier retreat, the microbial diversity in Antarctic soil is still poorly understood. In this study, we analysed more than 40 000 sequences of the V5-V6 hypervariable region of the 16S rRNA gene obtained by 454 pyrosequencing from four soil samples from the Wanda Glacier forefield, King George Island, Antarctic Peninsula. Phylotype diversity and richness were surprisingly high, and taxonomic assignment of sequences revealed that communities are dominated by Proteobacteria, Bacteroidetes and Euryarchaeota, with a high frequency of archaeal and bacterial phylotypes unclassified at the genus level and without cultured representative strains, representing a distinct microbial community signature. Several phylotypes were related to marine microorganisms, indicating the importance of the marine environment as a source of colonizers for this recently deglaciated environment. Finally, dominant phylotypes were related to different microorganisms possessing a large array of metabolic strategies, indicating that early successional communities in Antarctic glacier forefield can be also functionally diverse.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsec/fiu005DOI Listing

Publication Analysis

Top Keywords

glacier forefield
12
antarctic peninsula
12
archaeal bacterial
8
bacterial phylotypes
8
wanda glacier
8
communities antarctic
8
antarctic
6
distinct composition
4
composition signatures
4
signatures archaeal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!