The conformational changes of imatinib (IMT) are crucial for understanding the ligand-receptor interaction and its mechanism of action [Agofonov et al. (2014) Nature Struct Mol Biol 21:848-853]. Therefore, here we investigated the free energy conformational landscape of the free IMT base, aiming to describe the three-dimensional structures and energetic stability of its conformers. Forty-five unique conformers, within an energy window of 4.8 kcal mol(-1) were identified by a conformational search in gas-phase, at the B3LYP/6-31G(d) theoretical level. Among these, the 20 most stable, as well as 4 conformers resulting from optimization of experimental structures found in the two known polymorphs of IMT and in the c-Abl complex were further refined using the 6-31+G(d,p) basis set and the polarizable continuum solvation model. The most stable conformers in gas-phase and water exhibit a V-shaped structure. The major difference between the most stable free conformers and the bioactive conformers consists in the relative orientation of the pyrimidine-pyridine groups responsible for hydrogen bonding interactions in the ATP-binding pocket. The ratio of mole fractions corresponding to the two known (α and β) polymorphic forms of IMT was estimated from the calculated thermochemical data, in quantitative agreement with the existing experimental data related to their solubility. The electronic absorption spectrum of this compound was investigated in water and explained based on the theoretical TD-DFT results, considering the Boltzmann population-averaged computed data at CAM-B3LYP/6-31+G(d,p) level of theory for the nine most stable conformers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-015-2639-8DOI Listing

Publication Analysis

Top Keywords

conformational landscape
8
stable conformers
8
conformers
7
conformational
4
landscape low
4
low lying
4
lying excited
4
excited states
4
states imatinib
4
imatinib conformational
4

Similar Publications

Allostery.

Q Rev Biophys

January 2025

Department of Chemistry, University of Oslo, Oslo, Norway.

describes the ability of biological macromolecules to transmit signals spatially through the molecule from an site – a site that is distinct from binding sites of primary, endogenous ligands – to the functional or active site. This review starts with a historical overview and a description of the classical example of allostery – hemoglobin – and other well-known examples (aspartate transcarbamoylase, Lac repressor, kinases, G-protein-coupled receptors, adenosine triphosphate synthase, and chaperonin). We then discuss fringe examples of allostery, including intrinsically disordered proteins and inter-enzyme allostery, and the influence of dynamics, entropy, and conformational ensembles and landscapes on allosteric mechanisms, to capture the essence of the field.

View Article and Find Full Text PDF

The conformational landscape of human transthyretin revealed by cryo-EM.

Nat Struct Mol Biol

January 2025

Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.

Transthyretin (TTR) is a natively tetrameric thyroxine transporter in blood and cerebrospinal fluid whose misfolding and aggregation causes TTR amyloidosis. A rational drug design campaign identified the small molecule tafamidis (Vyndamax) as a stabilizer of the native TTR fold, and this aggregation inhibitor is regulatory agency approved for the treatment of TTR amyloidosis. Here we used cryo-EM to investigate the conformational landscape of this 55 kDa tetramer in the absence and presence of one or two ligands, revealing inherent asymmetries in the tetrameric architecture and previously unobserved conformational states.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by SARS-CoV-2 continues to pose a major challenge to global health. Targeting the main protease of the virus (Mpro), which is essential for viral replication and transcription, offers a promising approach for therapeutic intervention. In this study, advanced computational techniques such as molecular docking and molecular dynamics simulations were used to screen a series of antiviral compounds for their potential inhibitory effect on the SARS-CoV-2 Mpro.

View Article and Find Full Text PDF

Motif distribution and DNA methylation underlie distinct Cdx2 binding during development and homeostasis.

Nat Commun

January 2025

Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Transcription factors guide tissue development by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of transcription factors. However, how transcription factors navigate chromatin features to selectively bind a small subset of all the possible genomic target loci remains poorly understood.

View Article and Find Full Text PDF

Objectives: Unlike other diseases, cancer is not just a genome disease but should broadly be viewed as a disease of the cellular machinery. Therefore, integrative multifaceted approaches are crucial to understanding the complex nature of cancer biology. Bcl-2 (B-cell lymphoma 2), encoded by the human BCL-2 gene, is an anti-apoptotic molecule that plays a key role in apoptosis and genetic variation of Bcl-2 proteins and is vital in disrupting the apoptotic machinery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!