In fission yeast, microtubules push against the cell edge, thereby positioning the nucleus in the cell center. Kinesin-8 motors regulate microtubule catastrophe; however, their role in nuclear positioning is not known. Here we develop a physical model that describes how kinesin-8 motors affect nuclear centering by promoting a microtubule catastrophe. Our model predicts the improved centering of the nucleus in the presence of motors, which we confirmed experimentally in living cells. The model also predicts a characteristic time for the recentering of a displaced nucleus, which is supported by our experiments where we displaced the nucleus using optical tweezers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.114.078103 | DOI Listing |
Proc Natl Acad Sci U S A
November 2024
Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb 10000, Croatia.
Cancer cells often display errors in chromosome segregation, some of which result from improper chromosome alignment at the spindle midplane. Chromosome alignment is facilitated by different rates of microtubule poleward flux between sister kinetochore fibers. However, the role of the poleward flux in supporting mitotic fidelity remains unknown.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
During mitosis, microtubule dynamics are regulated to ensure proper alignment and segregation of chromosomes. The dynamics of kinetochore-attached microtubules are regulated by hepatoma-upregulated protein (HURP) and the mitotic kinesin-8 Kif18A, but the underlying mechanism remains elusive. Using single-molecule imaging in vitro, we demonstrate that Kif18A motility is regulated by HURP.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
July 2024
Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, P.R. China. Electronic address:
The dimeric kinesin-8 motors have the biological function of depolymerizing microtubules (MTs) from the plus end. However, the molecular mechanism of the depolymerization promoted by the kinesin-8 motors is still undetermined. Here, a model is proposed for the MT depolymerization by the kinesin-8 motors.
View Article and Find Full Text PDFRes Sq
May 2024
Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
During mitosis, microtubule dynamics are regulated to ensure proper alignment and segregation of chromosomes. The dynamics of kinetochore-attached microtubules are regulated by hepatoma-upregulated protein (HURP) and the mitotic kinesin-8 Kif18A, but the underlying mechanism remains elusive. Using single-molecule imaging , we demonstrate that Kif18A motility is regulated by HURP.
View Article and Find Full Text PDFDuring mitosis, microtubule dynamics are regulated to ensure proper alignment and segregation of chromosomes. The dynamics of kinetochore-attached microtubules are regulated by hepatoma-upregulated protein (HURP) and the mitotic kinesin-8 Kif18A, but the underlying mechanism remains elusive. Using single-molecule imaging , we demonstrate that Kif18A motility is regulated by HURP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!