Modular C-H functionalization cascade of aryl iodides.

J Am Chem Soc

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States.

Published: March 2015

We report the first example of ipso-borylation for the modular 1,2-bisfunctionalization of aryl iodides via C-H functionalization. The carbon-boron bond is used as a lynchpin to access ipso carbon-carbon, carbon-nitrogen, carbon-oxygen, and carbon-halogen (Cl, Br, I) bonds. The utility of our methodology is illustrated through quick, modular syntheses of the pharmaceuticals Abilify and Flunixin.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5b01082DOI Listing

Publication Analysis

Top Keywords

c-h functionalization
8
aryl iodides
8
modular c-h
4
functionalization cascade
4
cascade aryl
4
iodides report
4
report example
4
example ipso-borylation
4
ipso-borylation modular
4
modular 12-bisfunctionalization
4

Similar Publications

Catalytic Asymmetric Dehydrogenative Si-H/X-H Coupling toward Si-Stereogenic Silanes.

Acc Chem Res

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.

View Article and Find Full Text PDF

Cp*Co(III)-catalyzed -alkylation/alkenylation of anilides.

Org Biomol Chem

January 2025

College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.

A highly practical and efficient Cp*Co(III)-catalyzed C-H alkylation/alkenylation reaction of anilides with maleimides and acrylates was developed, during which a weakly coordinating amide carbonyl group functioned as the directing group. This approach features high efficiency, good functional group tolerance, and broad substrate scope, and a variety of 3-substituted succinimides and -alkenylated anilides were synthesized in moderate to excellent yields. Furthermore, the reaction is highly selective, affording mono--alkylated/alkenylated products only.

View Article and Find Full Text PDF

In organic synthesis, C(sp)-H functionalization is a revolutionary method that allows direct alteration of unactivated C-H bonds. It can obviate the need for pre-functionalization and provides access to streamlined and atom economical routes for the synthesis of complex molecules starting from simple starting materials. Many strategies have evolved, such as photoredox catalysis, organocatalysis, non-directed C-H activation, transiently directed C-H activation, and native functionality directed C-H activation.

View Article and Find Full Text PDF

Mononuclear Fe enzymes such as heme-containing cytochrome P450 enzymes catalyze a variety of C-H activation reactions under ambient conditions, and they represent an attractive platform for engineering reactivity through changes to the native enzyme. Using density functional theory, we study both native Fe and non-native group 8 (Ru, Os) and group 9 (Ir) metal centers in an active site model of P450. We quantify how changing the metal changes spin state preferences throughout the catalytic cycle.

View Article and Find Full Text PDF

Allylic C-H oxygenation of unactivated internal olefins by the Cu/azodiformate catalyst system.

Nat Commun

January 2025

Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.

Allylic ethers and alcohols are essential structural motifs commonly present in natural products and pharmaceuticals. Direct allylic C-H oxygenation of internal alkenes is one of the most direct methods, bypassing the necessity for an allylic leaving group that is needed in the traditional Tsuji-Trost reaction. Herein, we develop an efficient and practical method for synthesizing (E)-allyl ethers from readily available internal alkenes and alcohols or phenols via selective allylic C-H oxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!