Carcinogenic nitropolycyclic aromatic hydrocarbons (nitro-PAHs) are ubiquitous in the ambient environment. They are emitted predominantly from internal combustion engines and by reacting polycyclic aromatic hydrocarbons with nitrogen oxide. The emerging evidence that nitro-PAHs are taken up by plants and bioaccumulatd in the food chain has aroused worldwide concerns for the potential of chronic poisoning through dietary intake. Therefore, analytical methods of high sensitivity are extremely important for assessing the risk of human exposure to nitro-PAHs. This paper describes the development of a simple and robust ultraperformance liquid chromatography coupled fluorescence detector (UPLC-FLD) method for the sensitive determination of nitro-PAHs in meat products. The method entails precolumn reduction of the otherwise nonfluorescent nitro-PAHs to amino-PAHs which strongly fluoresce for their determination by UPLC-FLD analysis. The developed method was validated for extraction efficiency, accuracy, precision, and detection limit and has been successfully applied in quantifying 1-nitronaphthalene (1-NN), 2-nitrofluorene (2-NF), and 1-nitropyrene (1-NP) in fresh and cured meat products. The results showed that the combination of Fe/H(+)-induced nitro-reduction and UPLC-FLD analysis allows sensitive quantification of 1-NN, 2-NF, and 1-NP at detection limits of 0.59, 0.51, and 0.31 μg/kg, respectively, which is at least 10 times lower than those of the existing analytical methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.5b00523 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!