Generation of new cardiomyocytes is critical for cardiac repair following myocardial injury, but which kind of stimuli is most important for cardiomyocyte regeneration is still unclear. Here we explore if apoptotic stimuli, manifested through caspase activation, influences cardiac progenitor up-regulation and cardiomyocyte differentiation. Using mouse embryonic stem cells as a cellular model, we show that sublethal activation of caspases increases the yield of cardiomyocytes while concurrently promoting the proliferation and differentiation of c-Kit+/α-actininlow cardiac progenitor cells. A broad-spectrum caspase inhibitor blocked these effects. In addition, the caspase inhibitor reversed the mRNA expression of genes expressed in cardiomyocytes and their precursors. Our study demonstrates that sublethal caspase-activation has an important role in cardiomyocyte differentiation and may have significant implications for promoting cardiac regeneration after myocardial injury involving exogenous or endogenous cell sources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357377PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120176PLOS

Publication Analysis

Top Keywords

caspase activation
8
generation cardiomyocytes
8
embryonic stem
8
stem cells
8
myocardial injury
8
cardiac progenitor
8
cardiomyocyte differentiation
8
caspase inhibitor
8
sublethal caspase
4
activation promotes
4

Similar Publications

Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.

Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.

View Article and Find Full Text PDF

Adiponectin (ADN) regulates DNA synthesis, cell apoptosis and cell cycle to participate in the pathology and progression of glioblastoma. The present study aimed to further explore the effect of ADN on temozolomide (TMZ) resistance in glioblastoma and the underlying mechanism of action. Glioblastoma cell lines (U251 and U87-MG cells) were treated with ADN and TMZ at different concentrations; subsequently, 3.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Background: Mitochondria generate the adenosine triphosphate (ATP) necessary for eukaryotic cells, serving as their primary energy suppliers, and contribute to host defense by producing reactive oxygen species. In many critical illnesses, including sepsis, major trauma, and heatstroke, the vicious cycle between activated coagulation and inflammation results in tissue hypoxia-induced mitochondrial dysfunction, and impaired mitochondrial function contributes to thromboinflammation and cell death.

Methods: A computer-based online search was performed using the PubMed and Web of Science databases for published articles concerning sepsis, trauma, critical illnesses, cell death, mitochondria, inflammation, coagulopathy, and organ dysfunction.

View Article and Find Full Text PDF

Targeting the NLRP3 inflammasome as a novel therapeutic target for osteoarthritis.

Inflammopharmacology

January 2025

Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.

Osteoarthritis, the most common arthritic condition, is an age-related progressive disease characterized by the loss of cartilage and synovial inflammation in the knees and hips. Development of pain, stiffness, and considerably restricted mobility of the joints are responsible for the production of matrix metalloproteinases and cytokines. Although several treatments are available for the management of this disease condition, they possess limitations at different levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!