Background: Obesity and type 2 diabetes (T2D) are major public health concerns worldwide, and their prevalence has only increased in recent years. Mexican Americans are disproportionately afflicted by obesity and T2D, and rates are even higher in the United States-Mexico border region. To determine the factors associated with the increased risk of T2D, obesity, and other diseases in this population, the Cameron County Hispanic Cohort was established in 2004.
Results: In this study, we characterized the 16S gut community of a subset of 63 subjects from this unique cohort. We found that these communities, when compared to Human Microbiome Project subjects, exhibit community shifts often observed in obese and T2D individuals in published studies. We also examined microbial network relationships between operational taxonomic units (OTUs) in the Cameron County Hispanic Cohort (CCHC) and three additional datasets. We identified a group of seven genera that form a tightly interconnected network present in all four tested datasets, dominated by butyrate producers, which are often increased in obese individuals while being depleted in T2D patients.
Conclusions: Through a combination of increased disease prevalence and relatively high gut microbial homogeneity in the subset of CCHC members we examined, we believe that the CCHC may represent an ideal community to dissect mechanisms underlying the role of the gut microbiome in human health and disease. The lack of CCHC subject gut community segregation based on all tested metadata suggests that the community structure we observe in the CCHC likely occurs early in life, and endures. This persistent 'disease'-related gut microbial community in CCHC subjects may enhance existing genetic or lifestyle predispositions to the prevalent diseases of the CCHC, leading to increased attack rates of obesity, T2D, non-alcoholic fatty liver disease, and others.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355967 | PMC |
http://dx.doi.org/10.1186/s40168-015-0072-y | DOI Listing |
Gut Microbes
December 2025
Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.
Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential.
View Article and Find Full Text PDFCurr Microbiol
January 2025
State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.
Gut mucosal immunity of teleost is mainly governed by mucosa-associated lymphoid tissues (MALT) and indigenous microbiota on mucosal surfaces of gut tract, which can confer protection against pathogenic invasion. However, the probiotic features of bacterial isolates from gut tract of triploid cyprinid fish (TCF) were largely unclear. In this study, Lysinibacillus and Enterobacter strains were isolated for probiotic identification.
View Article and Find Full Text PDFNat Ecol Evol
January 2025
Department of Biology, University of Turku, Turku, Finland.
Understanding factors influencing community resilience to disturbance is critical for mitigating harm at various scales, including harm from medication to gut microbiota and harm from human activity to global biodiversity, yet there is a lack of data from large-scale controlled experiments. Factors expected to boost resilience include prior exposure to the same disturbance and dispersal from undisturbed patches. Here we set up an in vitro system to test the effect of disturbance pre-exposure and dispersal represented by community mixing.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands.
The effect of fermented foods on healthy human gut microbiota structure and function, particularly its seasonal preference and frequent long-term consumption, has been largely uncharacterised. Here, we assess the gut microbiota and metabolite composition of 78 healthy Indian agrarian individuals who differ in the intake of fermented milk and soybean products by seasonal sampling during hot-humid summer, autumn and dry winter. Here we show that, seasonal shifts between the Prevotella- and Bifidobacterium/Ruminococcus-driven community types, or ecological states, and associated fatty acid derivatives, with a bimodal change in Bacteroidota community structure during summer, particularly in fermented milk consumers.
View Article and Find Full Text PDFFEMS Microbiol Ecol
January 2025
Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
In this study, we investigated the influence of host genetics and environmental microbiomes on the early gut microbiome of Atlantic salmon. We aimed at rearing the fish in either r- or K-selected environments, where the r-selected environment would be expected to be dominated by fast-growing opportunistic bacteria and thus represent more detrimental microbial environment than the K-selected water. Eggs from both wild and aquaculture strains of Atlantic salmon were hatched under germ-free conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!