Efficiency of treatments for controlling Trichoderma spp during spawning in cultivation of lignicolous mushrooms.

Braz J Microbiol

Laboratoty of Mycology and Mushroom Cultivation Instituto de Investigaciones Biotecnológicas/Instituto Tecnológico de Chascomús Consejo Nacional de Investigaciones Científicas y Técnicas Universidad Nacional de San Martín Provincia de Buenos Aires Argentina Laboratoty of Mycology and Mushroom Cultivation, Instituto de Investigaciones Biotecnológicas/Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, Provincia de Buenos Aires, Argentina.

Published: October 2015

Trichoderma spp is the cause of the green mold disease in mushroom cultivation production. Many disinfection treatments are commonly applied to lignocellulose substrates to prevent contamination. Mushroom growers are usually worried about the contaminations that may occur after these treatments during handling or spawning. The aim of this paper is to estimate the growth of the green mold Trichoderma sp on lignocellulose substrates after different disinfection treatments to know which of them is more effective to avoid contamination during spawning phase. Three different treatments were assayed: sterilization (121 °C), immersion in hot water (60 and 80 °C), and immersion in alkalinized water. Wheat straw, wheat seeds and Eucalyptus or Populus sawdust were used separately as substrates. After the disinfection treatments, bagged substrates were sprayed with 3 mL of suspension of conidia of Trichoderma sp (10(5) conidia/mL) and then separately spawned with Pleurotus ostreatus or Gymnopilus pampeanus. The growth of Trichoderma sp was evaluated based on a qualitative scale. Trichoderma sp could not grow on non-sterilized substrates. Immersions in hot water treatments and immersion in alkalinized water were also unfavorable treatments for its growth. Co- cultivation with mushrooms favored Trichoderma sp growth. Mushroom cultivation disinfection treatments of lignocellulose substrates influence on the growth of Trichoderma sp when contaminations occur during spawning phase. The immersion in hot water at 60 °C for 30 min or in alkalinized water for 36 h, are treatments which better reduced the contaminations with Trichoderma sp during spawning phase for the cultivation of lignicolous species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323299PMC
http://dx.doi.org/10.1590/s1517-83822014000400017DOI Listing

Publication Analysis

Top Keywords

disinfection treatments
16
lignocellulose substrates
12
spawning phase
12
hot water
12
alkalinized water
12
trichoderma
9
treatments
9
trichoderma spp
8
cultivation lignicolous
8
green mold
8

Similar Publications

Controlling Listeria monocytogenes and its associated biofilms in the food industry requires various disinfection techniques, including physical, chemical, and biological treatments. Biocides, owing to their ease of use, cost-effectiveness, dissolvability in water, and efficacy against a wide range of microorganisms, are frequently selected options. Nonetheless, concerns have been raised about their efficacy in controlling L.

View Article and Find Full Text PDF

Background: This study compared the antibacterial effects of 940 nm diode laser and sodium hypochlorite and chlorhexidine irrigations on in human permanent single-rooted teeth.

Materials And Methods: In this study, 65 extracted human single-rooted teeth were prepared using the crown-down method using rotary files. The root canals were irrigated with 5.

View Article and Find Full Text PDF

Comprehensive evaluation of sodium dichloroisocyanurate (NaDCC) tablets as a novel solid-state alternative to conventional membrane cleaning agents in gravity-driven filtration systems.

Chemosphere

December 2024

Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Gorang-Daero 283, Ilsanseo-Gu, Goyang, Gyeonggi 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea. Electronic address:

Gravity-driven membrane (GDM) systems are increasingly recognized as sustainable and energy-efficient solutions for decentralized water treatment. However, membrane fouling, particularly by organic matter, remains a significant operational challenge, necessitating regular chemical cleaning to maintain performance. The present study was undertaken to investigate the cleaning efficiency of sodium dichloroisocyanurate (NaDCC) tablets, a novel solid-state alternative to conventional liquid cleaning agents such as sodium hypochlorite (NaOCl), sodium lauryl sulfate (SLS), acetic acid, and citric acid.

View Article and Find Full Text PDF

Effective management of pre-existing biofilms using UV-LED through inactivation, disintegration and peeling.

J Hazard Mater

December 2024

Department of Electronic Engineering, Laboratory of Micro/Nano-Optoelectronics, Xiamen University, Xiamen, Fujian 361005, China; Institute of Nanoscience and Applications (INA), Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.

Managing undesirable biofilms is a persistent challenge in water treatment and distribution systems. Although ultraviolet-light emitting diode (UV-LED) irradiation, an emerging disinfection method with the chemical-free and emission-adjustable merits, has been widely reported effective to inactivate planktonic bacteria, few studies have examined its effects on biofilms. This study aims to fill this gap by exploring the performance and mechanism of UV-LEDs on the prefabricated Escherichia coli (E.

View Article and Find Full Text PDF

The presence of aquatic biopolymeric organic carbon of high (> 10 - 20 kDa) molecular weight (high-MW OC) in drinking water produced from surface water affects its biological stability which may cause regrowth in disinfectant-free distribution. This study compares two analytical methods for determining the concentration of aquatic high-MW OC, namely LC-OCD (liquid chromatography - organic carbon detection) and PHMOC (particulate and colloidal high-molecular weight OC). LC-OCD entails prefiltration of the water sample, chromatographical separation of the relevant biopolymer (BP) OC-fraction, and in-line OC detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!