Genetically attenuated microorganisms, pathogens, and some commensal bacteria can be engineered to deliver recombinant heterologous antigens to stimulate the host immune system, while still offering good levels of safety. A key feature of these live vectors is their capacity to stimulate mucosal as well as humoral and/or cellular systemic immunity. This enables the use of different forms of vaccination to prevent pathogen colonization of mucosal tissues, the front door for many infectious agents. Furthermore, delivery of DNA vaccines and immune system stimulatory molecules, such as cytokines, can be achieved using these special carriers, whose adjuvant properties and, sometimes, invasive capacities enhance the immune response. More recently, the unique features and versatility of these vectors have also been exploited to develop anti-cancer vaccines, where tumor-associated antigens, cytokines, and DNA or RNA molecules are delivered. Different strategies and genetic tools are constantly being developed, increasing the antigenic potential of agents delivered by these systems, opening fresh perspectives for the deployment of vehicles for new purposes. Here we summarize the main characteristics of the different types of live bacterial vectors and discuss new applications of these delivery systems in the field of vaccinology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323283 | PMC |
http://dx.doi.org/10.1590/s1517-83822014000400001 | DOI Listing |
Microbiol Spectr
January 2025
Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA.
Mycoplasma (Class: Mollicutes) contamination in cell cultures is a universal concern for research laboratories. Some estimates report contamination in up to 35% of continuous cell lines. Various commercial antibiotic treatments can successfully decontaminate clean cell lines ; however, decontamination of bacterial cultures remains challenging.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.
Surface-mediated transmission of pathogens plays a key role in healthcare-associated infections. However, proper techniques for its quantitative analysis are lacking, making it challenging to develop novel antimicrobial and anti-fouling surfaces to reduce pathogen spread via environmental surfaces. This study demonstrates a gelatin hydrogel-based touch transfer test, the HydroTouch test, to evaluate pathogen transmission on high-touch surfaces under semi-dry conditions.
View Article and Find Full Text PDFAnaerobe
January 2025
Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610.
The probing of live bacteria via the incorporation of fluorescent D-amino acids (FDAAs) during peptidoglycan synthesis has been shown to be practical for visualizing both gram-positive and gram-negative bacterial species. This study demonstrates the reliability and applications of FDAA labelling for the fluorescent imaging of an obligate anaerobe.
View Article and Find Full Text PDFAnal Chem
January 2025
Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, Strasbourg F-67000, France.
The worldwide spread of antibiotic resistance is considered to be one of the major health threats to society. While developing new antibiotics is crucial, there is also a strong need for next-generation analytical methods for studying the physiological state of live bacteria in heterogeneous populations and their response to environmental stress. Here we report a single-cell high-throughput method to monitor changes in the bacterial cell envelope in response to stress based on ratiometric flow cytometry.
View Article and Find Full Text PDFBMC Pediatr
January 2025
Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
Purpose: To elucidate the global epidemiology of Ophthalmia Neonatorum (ON), as well as its causative organisms and their antibiotic susceptibility patterns.
Methods: A systematic review of studies reporting the epidemiology of ON was performed using four electronic databases: PubMed, Scopus, Web of Science, and Medline. Data were extracted and study-specific estimates were combined using meta-analysis to obtain pooled proportions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!