This study presents the options for source-segregation and selective collection of recyclable waste fractions for Cetinje, Montenegro, with the aim of meeting the European Union 50% waste recycling target in 2023, and extending collection and disposal system that builds on the existing strengths of the city. To this end, three options were considered: (1) source separation and separate collection of dry recyclable materials and central sorting of residual waste; (2) source separation and collection of co-mingled dry recyclable materials, and central sorting in a clean material recovery facility of comingled recyclables and central sorting of residual waste; (3) collection of mixed waste (current situation) and subsequent central sorting. Scenarios 1 and 2 were found to meet the European Union 50% recycling target in 2023, provided that a fast implementation of the new separate collection schemes to fine sort the co-mingled collected recyclable materials is available. Finally, a financial evaluation was made for the options and the investment and operational costs over a 20-year period were estimated. Unit costs for Scenario 3 were found to be lower than for Scenario 1 and 2. As Scenario 3 will not meet the future European Union recycling targets, Scenario 2 has been pointed as the most feasible scenario for Cetinje, with reference to the expected lower total costs compared with Scenario 1.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0734242X15574563DOI Listing

Publication Analysis

Top Keywords

central sorting
16
european union
12
recyclable materials
12
cetinje montenegro
8
union 50%
8
recycling target
8
target 2023
8
source separation
8
separate collection
8
dry recyclable
8

Similar Publications

Efficient visual word recognition presumably relies on orthographic prediction error (oPE) representations. On the basis of a transparent neurocognitive computational model rooted in the principles of the predictive coding framework, we postulated that readers optimize their percept by removing redundant visual signals, allowing them to focus on the informative aspects of the sensory input (i.e.

View Article and Find Full Text PDF

The efficient isolation and molecular analysis of circulating tumor cells (CTCs) from whole blood at single-cell level are crucial for understanding tumor metastasis and developing personalized treatments. The viability of isolated cells is the key prerequisite for the downstream molecular analysis, especially for RNA sequencing. This study develops a laser-induced forward transfer -assisted microfiltration system (LIFT-AMFS) for high-viability CTC enrichment and retrieval from whole blood.

View Article and Find Full Text PDF

Obesity is a risk factor for asthma morbidity, associated with less responsiveness to inhaled corticosteroids. CD4+ T-cells are central to the immunology of asthma and may contribute to the unique obese asthma phenotype. We sought to characterize the single cell CD4+ Transcriptional profile differences in obese children with asthma compared to normal weight children with asthma.

View Article and Find Full Text PDF

Background: Opioids are frequently prescribed for short-term acute pain following surgery. Used appropriately, opioids deliver extremely favourable pain relief. Used longer than 90-days, however, can result in health complications, including unintentional overdose and addiction.

View Article and Find Full Text PDF

: Mirtazapine (MRZ) is a psychotropic drug prescribed to manage serious sorts of depression. By virtue of its extensive initial-pass metabolic process with poor water solubility, the ultimate bioavailability when taken orally is a mere 50%, necessitating repeated administration. The current inquiry intended to fabricate nose-to-brain chitosan-grafted cationic leciplexes of MRZ (CS-MRZ-LPX) to improve its pharmacokinetic weaknesses and boost the pharmacodynamics aspects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!