Initiation of cellular DNA replication is tightly controlled to sustain genomic integrity. In eukaryotes, the heterohexameric origin recognition complex (ORC) is essential for coordinating replication onset. Here we describe the crystal structure of Drosophila ORC at 3.5 Å resolution, showing that the 270 kilodalton initiator core complex comprises a two-layered notched ring in which a collar of winged-helix domains from the Orc1-5 subunits sits atop a layer of AAA+ (ATPases associated with a variety of cellular activities) folds. Although canonical inter-AAA+ domain interactions exist between four of the six ORC subunits, unanticipated features are also evident. These include highly interdigitated domain-swapping interactions between the winged-helix folds and AAA+ modules of neighbouring protomers, and a quasi-spiral arrangement of DNA binding elements that circumnavigate an approximately 20 Å wide channel in the centre of the complex. Comparative analyses indicate that ORC encircles DNA, using its winged-helix domain face to engage the mini-chromosome maintenance 2-7 (MCM2-7) complex during replicative helicase loading; however, an observed out-of-plane rotation of more than 90° for the Orc1 AAA+ domain disrupts interactions with catalytic amino acids in Orc4, narrowing and sealing off entry into the central channel. Prima facie, our data indicate that Drosophila ORC can switch between active and autoinhibited conformations, suggesting a novel means for cell cycle and/or developmental control of ORC functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368505 | PMC |
http://dx.doi.org/10.1038/nature14239 | DOI Listing |
Small Methods
December 2024
Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099, P. R. China.
Constructing a hollow structure inside zeolite is very helpful for improving its performance. Unlike the conventional alkaline etching technique usually operated at high temperature (typically 170 °C) and high pressure (autogenerated in autoclave), here, it is discovered that zeolite MFI nano-box can be achieved under mild etching conditions of atmospheric pressure and low temperature of 80 °C, making it very attractive for energy conservation and practical applications. A hollow-structure formation mechanism of protection-dissolution etching is demonstrated by characterizing MFI crystals obtained under different etching time, temperature, and etchant concentration.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Near-Net Forming of Light Metals of Liaoning Province, Dalian Jiaotong University, Dalian 116028, China.
Porous CuNi films are promising candidates for electrocatalytic water splitting, with their catalytic performance largely influenced by the crystallographic structure and chemical state. In this study, by employing a magnetic field-controlled bubble template-assisted electrodeposition method, CuNi films with a preferred Ni(111) crystal orientation were synthesized. Moreover, adjusting the magnetic field direction during deposition can affect the degree of preferred orientation and, consequently, the electrochemical activity of the films.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Tsinghua University, Department of Chemistry, 1 Qinghuayuan, Haidian District, 100084, Beijing, CHINA.
The in-depth research on the charge transport properties of BN-embedded polycyclic aromatic hydrocarbons (BN-PAHs) still lags far behind studies of their emitting properties. Herein, we report the successfully synthesis of novel ladder-type BN-PAHs (BCNL1 and BCNL2) featuring a highly ordered BC3N2 acene unit, achieved via a nitrogen-directed tandem C-H borylation. Single-crystal X-ray diffraction analysis unambiguously revealed their unique and compact herringbone packing structures.
View Article and Find Full Text PDFSmall Methods
December 2024
Nanosensor Research Institute, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Republic of Korea.
The crystal phase of pseudocapacitive materials significantly influences charge storage kinetics and capacitance; yet, the underlying mechanisms remain poorly understood. This study focuses on tungsten oxide (WO), a material exhibiting multiple crystal phases with potential for energy storage. Despite extensive research on WO, the impact of different crystal structures on charge storage properties remains largely unexplored.
View Article and Find Full Text PDFInorg Chem
December 2024
Institute of Inorganic Chemistry (IAC), Karlsruhe Institute of Technology (KIT), Engesserstraße 15, D-76131 Karlsruhe, Germany.
Crown-ether coordination compounds of europium(II/III) and the crown ether (CHO) (24-crown-8, 24c8) are prepared, aiming at novel compounds, structures, and coordination modes as well as potential luminescence properties. By reacting EuCl, EuI, or EuCl with 24c8 or its derivatives in ionic liquids, the novel compounds [BuMeN][Eu(II)(NTf)] (), [BMIm][EuI] (), [EuCl(dibenzo-18c6)] (), [EuI(dibenzo-24c8)] (), [(Eu(III)Cl)(CHO)](24c8) (), and [Eu(III)Cl(24c8)]I () are obtained (BMIm: 1-butyl-3-methylimidazolium; EMIm: 1-ethyl-3-methylimidazolium). Based on different reaction conditions, different coordinative modes including the absence of the crown ether in the product (, ), splitting of the crown ether (), and coordination of 24c8 via six of eight oxygen atoms () and, finally, via all oxygen atoms () are observed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!