Myelodysplastic syndromes (MDSs) are a group of heterogeneous clonal hematologic malignancies that are characterized by defective bone marrow (BM) hematopoiesis and by the occurrence of intramedullary apoptosis. During the past decade, the identification of key genetic and epigenetic alterations in patients has improved our understanding of the pathophysiology of this disease. However, the specific molecular mechanisms leading to the pathogenesis of MDS have largely remained obscure. Recently, essential evidence supporting the direct role of innate immune abnormalities in MDS has been obtained, including the identification of multiple key regulators that are overexpressed or constitutively activated in BM hematopoietic stem and progenitor cells. Mounting experimental results indicate that the dysregulation of these molecules leads to abnormal hematopoiesis, unbalanced cell death and proliferation in patients' BM, and has an important role in the pathogenesis of MDS. Furthermore, there is compelling evidence that the deregulation of innate immune and inflammatory signaling also affects other cells from the immune system and the BM microenvironment, which establish aberrant associations with hematopoietic precursors and contribute to the MDS phenotype. Therefore, the deregulation of innate immune and inflammatory signaling should be considered as one of the driving forces in the pathogenesis of MDS. In this article, we review and update the advances in this field, summarizing the results from the most recent studies and discussing their clinical implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857136PMC
http://dx.doi.org/10.1038/leu.2015.69DOI Listing

Publication Analysis

Top Keywords

innate immune
16
deregulation innate
12
immune inflammatory
12
inflammatory signaling
12
pathogenesis mds
12
myelodysplastic syndromes
8
immune
5
mds
5
signaling myelodysplastic
4
syndromes myelodysplastic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!