Since the first report of the chemoselective amide bond forming reaction between α-ketoacids and hydroxylamines in 2006, the KAHA (α-ketoacid-hydroxylamine) ligation has advanced to a useful tool for the routine synthesis of small to medium sized proteins and cyclic peptides. In this chapter we introduce the concept of KAHA ligation starting with the synthesis and properties of hydroxylamines and α-ketoacids, methods for their incorporation into peptides, and give an insight into the mechanism of the KAHA ligation. We cover important improvements including sequential ligations with 5-oxaproline, traceless synthesis of peptide α-ketoacids and show their application in chemical protein synthesis and cyclic peptide synthesis. Recent developments of the KAT (potassium acyl trifluoroborate) ligation and its application as fast and chemoselective bioconjugation method are described and an outlook on ongoing work and possible future developments is given at the end of the chapter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/128_2014_597 | DOI Listing |
Bioorg Chem
January 2025
School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, PR China; Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
We have successfully designed and assembled a 66-member library of protein tyrosine phosphatases (PTP) inhibitor candidates using α-ketoacid-hydroxylamine (KAHA) ligation. Subsequent in situ enzymatic screening revealed a potent hit (IC = 1.67 μM) against PTP1B, which displayed 6.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2024
Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland.
Secretoglobin (SCGB) 3A2 belongs to an intriguing family of small, secreted proteins present only in mammals. Although members of the SCGB protein family have distinct amino acid sequences, they share structural similarities. Of particularly interest is the not yet fully understood self-assembly ability of SCGBs, which arise from covalent disulfide dimerization and non-covalent oligomerization.
View Article and Find Full Text PDFRSC Chem Biol
November 2022
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8602 Japan
Chemical protein synthesis can provide well-defined modified proteins. Herein, we report the chemical synthesis of plant-derived cysteine-rich secretory proteins and late-stage derivatization of the synthetic proteins. The syntheses were achieved with distinct chemoselective amide bond forming reactions - EPF2 by native chemical ligation (NCL), epidermal patterning factor (EPF) 1 by the α-ketoacid-hydroxylamine (KAHA) ligation, and fluorescent functionalization of their folded variants by potassium acyltrifluoroborate (KAT) ligation.
View Article and Find Full Text PDFRSC Med Chem
November 2022
Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland St Lucia Queensland 4067 Australia
αD-Conotoxin VxXXB is a pseudo-homodimer that allosterically inhibits nicotinic acetylcholine receptors (nAChRs) with high potency and selectivity. However, challenges in synthesizing αD-conotoxins have hindered further structure-function studies on this novel class of peptides. To address this gap, we synthesized and characterized its C-terminal domain (CTD) and N-terminal domain (NTD).
View Article and Find Full Text PDFChemical protein synthesis (CPS) is a consolidated field founded on the high chemospecificity of amide-forming reactions, most notably the native chemical ligation (NCL), but also on new technologies such as the Ser/Thr ligation of C-terminal salicylaldehyde esters and the α-ketoacid-hydroxylamine (KAHA) condensation. NCL was conceptually devised for the ligation of peptides having a C-terminal thioester and an N-terminal cysteine. The synthesis of C-terminal peptide thioesters has attracted a lot of interest, resulting in the invention of a wide diversity of different methods for their preparation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!