Chemical Protein Synthesis with the KAHA Ligation.

Top Curr Chem

Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland.

Published: September 2015

Since the first report of the chemoselective amide bond forming reaction between α-ketoacids and hydroxylamines in 2006, the KAHA (α-ketoacid-hydroxylamine) ligation has advanced to a useful tool for the routine synthesis of small to medium sized proteins and cyclic peptides. In this chapter we introduce the concept of KAHA ligation starting with the synthesis and properties of hydroxylamines and α-ketoacids, methods for their incorporation into peptides, and give an insight into the mechanism of the KAHA ligation. We cover important improvements including sequential ligations with 5-oxaproline, traceless synthesis of peptide α-ketoacids and show their application in chemical protein synthesis and cyclic peptide synthesis. Recent developments of the KAT (potassium acyl trifluoroborate) ligation and its application as fast and chemoselective bioconjugation method are described and an outlook on ongoing work and possible future developments is given at the end of the chapter.

Download full-text PDF

Source
http://dx.doi.org/10.1007/128_2014_597DOI Listing

Publication Analysis

Top Keywords

kaha ligation
12
chemical protein
8
protein synthesis
8
synthesis
6
ligation
5
kaha
4
synthesis kaha
4
ligation report
4
report chemoselective
4
chemoselective amide
4

Similar Publications

KAHA ligation as a platform for the rapid discovery of Protein Tyrosine phosphatase 1B (PTP1B) inhibitors.

Bioorg Chem

January 2025

School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, PR China; Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.

We have successfully designed and assembled a 66-member library of protein tyrosine phosphatases (PTP) inhibitor candidates using α-ketoacid-hydroxylamine (KAHA) ligation. Subsequent in situ enzymatic screening revealed a potent hit (IC = 1.67 μM) against PTP1B, which displayed 6.

View Article and Find Full Text PDF

Chemical Synthesis of Secretoglobin 3A2 Covalent Homodimer and Photocaged Monomeric Variants.

Angew Chem Int Ed Engl

June 2024

Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland.

Secretoglobin (SCGB) 3A2 belongs to an intriguing family of small, secreted proteins present only in mammals. Although members of the SCGB protein family have distinct amino acid sequences, they share structural similarities. Of particularly interest is the not yet fully understood self-assembly ability of SCGBs, which arise from covalent disulfide dimerization and non-covalent oligomerization.

View Article and Find Full Text PDF

Chemical protein synthesis can provide well-defined modified proteins. Herein, we report the chemical synthesis of plant-derived cysteine-rich secretory proteins and late-stage derivatization of the synthetic proteins. The syntheses were achieved with distinct chemoselective amide bond forming reactions - EPF2 by native chemical ligation (NCL), epidermal patterning factor (EPF) 1 by the α-ketoacid-hydroxylamine (KAHA) ligation, and fluorescent functionalization of their folded variants by potassium acyltrifluoroborate (KAT) ligation.

View Article and Find Full Text PDF

αD-Conotoxin VxXXB is a pseudo-homodimer that allosterically inhibits nicotinic acetylcholine receptors (nAChRs) with high potency and selectivity. However, challenges in synthesizing αD-conotoxins have hindered further structure-function studies on this novel class of peptides. To address this gap, we synthesized and characterized its C-terminal domain (CTD) and N-terminal domain (NTD).

View Article and Find Full Text PDF

Chemical protein synthesis (CPS) is a consolidated field founded on the high chemospecificity of amide-forming reactions, most notably the native chemical ligation (NCL), but also on new technologies such as the Ser/Thr ligation of C-terminal salicylaldehyde esters and the α-ketoacid-hydroxylamine (KAHA) condensation. NCL was conceptually devised for the ligation of peptides having a C-terminal thioester and an N-terminal cysteine. The synthesis of C-terminal peptide thioesters has attracted a lot of interest, resulting in the invention of a wide diversity of different methods for their preparation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!