A critical step in providing better phosphor solution for white light emitting diode (LED) is to utilize inexpensive silicate phosphors with strong thermal stability. Here, we demonstrate yellow silicate phosphor-embedded glass thick films with a high luminous efficacy of ∼32 lm/W at 200 mA as a nonconventional remote-phosphor approach. The simple screen-printing process of a paste consisting of (Ba,Sr,Ca)₂SiO₄:Eu²⁺ phosphor and a low softening point glass creates a planar remote structure on a regular soda lime silicate glass with controllable film thickness and location (top vs bottom) of the phosphor layer. The glass matrix provides promising densification and adhesion with the substrate at the optimal low temperature of 410 °C, with the long-term stability in luminous efficacy over 500 h of operation. The proposed phosphor structure has important implications to overcome current limitations as phosphors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/co500169tDOI Listing

Publication Analysis

Top Keywords

thick films
8
luminous efficacy
8
phosphor
5
glass
5
long-term stable
4
stable low-temperature
4
low-temperature remote
4
silicate
4
remote silicate
4
silicate phosphor
4

Similar Publications

Extensive research on ultrashort laser-induced melting of noble metals like Au, Ag and Cu is available. However, studies on laser energy deposition and thermal damage of their alloys, which are currently attracting interest for energy harvesting and storage devices, are limited. This study investigates the melting damage threshold (DT) of three intermetallic alloys of Au and Cu (AuCu, AuCu and AuCu) subjected to single-pulse femtosecond laser irradiation, comparing them with their constituent metals.

View Article and Find Full Text PDF

Extreme ultraviolet (EUV) lithography is a cutting-edge technology in contemporary semiconductor chip manufacturing. Monitoring the EUV beam profiles is critical to ensuring consistent quality and precision in the manufacturing process. This study uncovers the practical use of fluorescent nanodiamonds (FNDs) coated on optical image sensors for profiling EUV and soft X-ray (SXR) radiation beams.

View Article and Find Full Text PDF

Regulable crack patterns for the fabrication of high-performance transparent EMI shielding windows.

iScience

January 2025

State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi'an, Shaanxi 710119, China.

Crack pattern-based metal grid film is an ideal candidate material for transparent electromagnetic interference shielding optical windows. However, achieving crack patterns with narrow grid spacing, small wire width, and high connectivity remains challenging. Herein, an aqueous acrylic colloidal dispersion was developed as a crack precursor for preparing crack patterns.

View Article and Find Full Text PDF

Thickness-dependence of the in-plane thermal conductivity and the interfacial thermal conductance of supported MoS2.

J Phys Condens Matter

January 2025

Dep. Fisica, Universidade Federal de Minas Gerais, ICEX, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, BRAZIL.

Nowadays, experimental research advances in condensed matter physics are deep-rooted in the development and manipulation of nanomaterials, making it essential to explore the fundamental properties of materials that are candidates for nanotechnology. In this work, we study the dependence of the molybdenum disulfide (MoS2) Raman modes on the sample temperature and on the excitation laser power. From the correlation between these two sets of measurements, we determine the planar thermal conductivity of MoSmonolayers, bilayers, trilayers, four layers, seven layers, and eight layers.

View Article and Find Full Text PDF

Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!