Conclusions: Murine congenital cytomegalovirus (CMV) (MCMV) infection of the inner ear cochlea, which caused continuous pathological change, occurred on the third day after intracerebral injection and persisted for a very long time.

Objective: Our study used the MCMV-induced hearing loss neonatal mouse model to investigate the pathological changes of the cochlea in different time windows.

Methods: Sixty newborn BALB/c mice were randomly and equally divided into the experimental group (MCMV intracerebral injection) and control group (normal saline intracerebral injection). At 1, 3, 5, 7, and 21 days after intracerebral injection, cochleas were extracted and evaluated by MCMV-DNA PCR analysis and histopathological examination.

Results: Two mice died before the end of the experiment in the experimental group, while there were no deaths in the control group. In the experimental group, the MCMV-DNA PCR samples did not show positive results in the gel electrophoresis until the 3-21 days after intracerebral injection, while no positive result was found in the control group. Pathological changes including hemorrhage and inflammatory cell infiltration of the scala vestibule and scala tympani began on the third day, spiral ganglion cell gap widening and cell thinning began on the seventh day, and scala tympani fibrosis began on the 14th day.

Download full-text PDF

Source
http://dx.doi.org/10.3109/00016489.2014.995830DOI Listing

Publication Analysis

Top Keywords

intracerebral injection
20
pathological changes
12
experimental group
12
control group
12
inner ear
8
ear cochlea
8
cochlea time
8
hearing loss
8
mouse model
8
third day
8

Similar Publications

Bone marrow mesenchymal stem cells derived cytokines associated with AKT/IAPs signaling ameliorate Alzheimer's disease development.

Stem Cell Res Ther

January 2025

NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative condition affecting around 50 million people worldwide. Bone marrow-derived mesenchymal stem cells (BMMSCs) have emerged as a promising source for cellular therapy due to their ability to differentiate into multiple cell types and their paracrine effects. However, the direct injection of BMMSCs can lead to potential unpredictable impairments, prompting a renewed interest in their paracrine effects for AD treatment.

View Article and Find Full Text PDF

New therapeutic agents developed for treating neurological disorders are often tested successfully on rodents. Testing in an appropriate large animal model where there is longer lifespan and comparable brain size to humans should improve translational success and is frequently expected by regulatory bodies. In this project, we aimed to establish a novel sheep model of Parkinson's disease as a large-brained experimental model for translational research.

View Article and Find Full Text PDF

Purpose: In addition to rodent models, the chick embryo model has gained attention for radiotracer evaluation. Previous studies have investigated tumours on the chorioallantoic membrane (CAM), but its value for radiotracer imaging of intracerebral tumours has yet to be demonstrated.

Procedures: Human U87 glioblastoma cells and U87-IDH1 mutant glioma cells were implanted into the brains of chick embryos at developmental day 5.

View Article and Find Full Text PDF

Introduction: Patients with cerebral hemorrhage often require a tracheal intubation to protect the airway and maintain oxygenation. Due to the use of analgesic and sedative drugs during endotracheal intubation and the opening of the glottis may easily cause aspiration pneumonia. Ceftriaxone is a semi-synthetic third-generation cephalosporin with strong antimicrobial activity against most gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!