In Vivo Dark-Field Radiography for Early Diagnosis and Staging of Pulmonary Emphysema.

Invest Radiol

From the *Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich; †Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching; ‡Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and Ludwig-Maximilians-University Hospital Munich, Munich, Germany; §German Center for Lung Research (DZL), Munich, Germany; ¶Medical Radiation Physics, Lund University, Lund, Sweden; and ¶Department of Radiology, University of Tübingen, Tübingen, Germany.

Published: July 2015

AI Article Synopsis

Article Abstract

Objectives: The aim of this study was to evaluate the suitability of in vivo x-ray dark-field radiography for early-stage diagnosis of pulmonary emphysema in mice. Furthermore, we aimed to analyze how the dark-field signal correlates with morphological changes of lung architecture at distinct stages of emphysema.

Materials And Methods: Female 8- to 10-week-old C57Bl/6N mice were used throughout all experiments. Pulmonary emphysema was induced by orotracheal injection of porcine pancreatic elastase (80-U/kg body weight) (n = 30). Control mice (n = 11) received orotracheal injection of phosphate-buffered saline. To monitor the temporal patterns of emphysema development over time, the mice were imaged 7, 14, or 21 days after the application of elastase or phosphate-buffered saline. X-ray transmission and dark-field images were acquired with a prototype grating-based small-animal scanner. In vivo pulmonary function tests were performed before killing the animals. In addition, lungs were obtained for detailed histopathological analysis, including mean cord length (MCL) quantification as a parameter for the assessment of emphysema. Three blinded readers, all of them experienced radiologists and familiar with dark-field imaging, were asked to grade the severity of emphysema for both dark-field and transmission images.

Results: Histopathology and MCL quantification confirmed the introduction of different stages of emphysema, which could be clearly visualized and differentiated on the dark-field radiograms, whereas early stages were not detected on transmission images. The correlation between MCL and dark-field signal intensities (r = 0.85) was significantly higher than the correlation between MCL and transmission signal intensities (r = 0.37). The readers' visual ratings for dark-field images correlated significantly better with MCL (r = 0.85) than visual ratings for transmission images (r = 0.36). Interreader agreement and the diagnostic accuracy of both quantitative and visual assessment were significantly higher for dark-field imaging than those for conventional transmission images.

Conclusions: X-ray dark-field radiography can reliably visualize different stages of emphysema in vivo and demonstrates significantly higher diagnostic accuracy for early stages of emphysema than conventional attenuation-based radiography.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RLI.0000000000000147DOI Listing

Publication Analysis

Top Keywords

dark-field radiography
12
pulmonary emphysema
12
stages emphysema
12
dark-field
10
emphysema
9
x-ray dark-field
8
dark-field signal
8
orotracheal injection
8
phosphate-buffered saline
8
dark-field images
8

Similar Publications

Background: A significant proportion of false positive recalls of mammography-screened women is due to benign breast cysts and simple fibroadenomas. These lesions appear mammographically as smooth-shaped dense masses and require the recalling of women for a breast ultrasound to obtain complementary imaging information. They can be identified safely by ultrasound with no need for further assessment or treatment.

View Article and Find Full Text PDF

X-ray dark-field imaging highlights sample structures through contrast generated by sub-resolution features within the inspected volume. Quantifying dark-field signals generally involves multiple exposures for phase retrieval, separating contributions from scattering, refraction, and attenuation. Here, we introduce an approach for non-interferometric X-ray dark-field imaging that presents a single-parameter representation of the sample.

View Article and Find Full Text PDF

Simulated low-dose dark-field radiography for detection of COVID-19 pneumonia.

PLoS One

December 2024

Chair of Biomedical Physics, Department of Physics & School of Natural Sciences, Technical University of Munich, Garching bei München, Germany.

Background: Dark-field radiography has been proven to be a promising tool for the assessment of various lung diseases.

Purpose: To evaluate the potential of dose reduction in dark-field chest radiography for the detection of the Coronavirus SARS-CoV-2 (COVID-19) pneumonia.

Materials And Methods: Patients aged at least 18 years with a medically indicated chest computed tomography scan (CT scan) were screened for participation in a prospective study between October 2018 and December 2020.

View Article and Find Full Text PDF

Background: The lymphatic system is the major route of cancer metastasis, and sentinel lymph nodes (SLNs) are the first station for the spread of cancer cells. Accurate identification of SLNs by tracers during surgery is crucial for SLN biopsy and lymphadenectomy. However, conventional monomodal tracers such as blue dyes and carbon nanoparticles often induce a misjudgment of SLNs and thus are still unsatisfying for clinical applications.

View Article and Find Full Text PDF

Mechanical ventilation with high tidal volume (TV) or positive end-expiratory pressure (PEEP) may induce lung overinflation and increased pulmonary vascular resistance to flow. In 8 healthy mechanically ventilated pigs, we evaluated whether incident dark field (IDF) vital microscopy, applied through a small thoracotomy, could be used to evaluate changes in alveolar and pulmonary microvessel dimensions under different ventilator settings. High TV (12 ml/kg) increased alveolar diameters (from 99 ± 13 to 114 ± 6 μm, p < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!