With poly(3-hexylthiophene) (P3HT) nanowire (NW) inclusion in active layers (ALs), organic solar cells (OSCs) based on P3HT donor and indene-C60 bisadduct (ICBA) acceptor showed power conversion efficiency (PCE) improvements for both bulk heterojunction (BHJ)- and bilayer (BL)-structure AL devices. The PCE increase was approximately 14 % for both types of P3HT:ICBA OSCs. However, improvements in short-circuit current density (Jsc ) were about 4.4 and 6.4 % for BHJ- and BL-type AL devices, respectively. A systematic study showed that the addition of P3HT NWs did not result in enhanced internal quantum efficiencies for either type of device. However, the difference in light-harvesting efficiency was important in accounting for Jsc variations. Interestingly, there was no correlation between Jsc and PCE variations, whereas the open-circuit voltage (Voc ) and fill factor (FF) showed correlations with the PCE. The variation in FF is discussed in terms of Voc and equivalent-circuit parameters based on a nonideal diode model.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201402762DOI Listing

Publication Analysis

Top Keywords

organic solar
8
solar cells
8
donor indene-c60
8
indene-c60 bisadduct
8
universal efficiency
4
efficiency improvement
4
improvement organic
4
cells based
4
based poly3-hexylthiophene
4
poly3-hexylthiophene donor
4

Similar Publications

The (PSS) experiment was part of the European Space Agency's mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers.

View Article and Find Full Text PDF

Direct photochemical conversion of CO2 into a single carbon-based product currently represents one of the major issues in the catalysis of the CO2 reduction reaction (CO2RR). In this work, we demonstrate that the combination of an organic photosensitizer with a heptacoordinated iron(II) complex allows to attain a noble-metal-free photochemical system capable of efficient and selective conversion of CO2 into CO upon light irradiation in the presence of N,N-diisopropylethylamine (DIPEA) and 2,2,2-trifluoroethanol (TFE) as the electron and proton donor, respectively, with unprecedented performances (ΦCO up to 36%, TONCO > 1000, selectivity > 99%). As shown by transient absorption spectroscopy studies, this can be achieved thanks to the fast rates associated with the electron transfer from the photogenerated reduced dye to the catalyst, which protect the dye from parallel degradation pathways ensuring its stability along the photochemical reaction.

View Article and Find Full Text PDF

Efficient ternary organic solar cells with suppressed nonradiative recombination via B‒N based polymer donor.

iScience

January 2025

Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.

Organic solar cells (OSCs) have developed rapidly in recent years. However, the energy loss ( ) remains a major obstacle to further improving the photovoltaic performance. To address this issue, a ternary strategy has been employed to precisely tune the and boost the efficiency of OSCs.

View Article and Find Full Text PDF

In the past two decades, organic solar cells (OSCs) have begun to attract attention as the efficiency of inorganic solar cells gradually approaches the theoretical limit. In the early development stage of OSCs, p-type conjugated polymers and n-type fullerene derivatives were the most commonly used electron donors and acceptors. However, with further research, the shortcomings of fullerene materials have become increasingly apparent.

View Article and Find Full Text PDF

Red-shifted optical absorption induced by donor-acceptor-donor π-extended dibenzalacetone derivatives.

RSC Adv

January 2025

Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) CEP 59625-900 Mossoró RN Brazil

Chalcones demonstrate significant absorption in the near ultraviolet-visible spectrum, making them valuable for applications such as solar cells, light-emitting diodes, and nonlinear optics. This study investigates four dibenzalacetone derivatives (DBAd), DBA, DBC, DEP, and DMA, examining the impact of electron-donating and electron-withdrawing groups and conjugation elongation on their electronic structure in solvents of varying polarities. Using the Polarizable Continuum Model (PCM) and time-dependent density functional theory (TD-DFT), we characterized the excited states of these compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!