AI Article Synopsis

  • Listeria monocytogenes is a gram-positive bacterium that can provoke strong immune responses, making it a promising candidate for cancer immunotherapy, especially for melanoma.
  • By transforming melanoma cells into activated dendritic cells, Listeria can effectively stimulate the immune system to target and eliminate tumor cells.
  • Low doses of Listeria in vaccination lead to melanoma regression and bacterial clearance, highlighting its potential as a safe and effective therapeutic vaccine without the need for antibiotics.

Article Abstract

Listeria monocytogenes is a gram-positive bacteria and human pathogen widely used in cancer immunotherapy because of its capacity to induce a specific cytotoxic T cell response in tumours. This bacterial pathogen strongly induces innate and specific immunity with the potential to overcome tumour induced tolerance and weak immunogenicity. Here, we propose a Listeria based vaccination for melanoma based in its tropism for these tumour cells and its ability to transform in vitro and in vivo melanoma cells into matured and activated dendritic cells with competent microbicidal and antigen processing abilities. This Listeria based vaccination using low doses of the pathogen caused melanoma regression by apoptosis as well as bacterial clearance. Vaccination efficacy is LLO dependent and implies the reduction of LLO-specific CD4+ T cell responses, strong stimulation of innate pro-inflammatory immune cells and a prevalence of LLO-specific CD8+ T cells involved in tumour regression and Listeria elimination. These results support the use of low doses of pathogenic Listeria as safe melanoma therapeutic vaccines that do not require antibiotics for bacterial removal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356589PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117923PLOS

Publication Analysis

Top Keywords

dendritic cells
8
listeria monocytogenes
8
listeria based
8
based vaccination
8
low doses
8
melanoma
6
cells
6
listeria
6
novel therapy
4
therapy melanoma
4

Similar Publications

Glutathione-Responsive Metal-Organic-Framework-Derived MnO/(A/R)TiO Nanoparticles for Enhanced Synergistic Sonodynamic/Chemodynamic/Immunotherapy.

ACS Nano

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnO/(A/R)TiO (MTO) in situ from MIL-125-NH (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation.

View Article and Find Full Text PDF

Tumor-draining lymph node dendritic cells (DCs) are poor stimulators of tumor antigen-specific CD4 T cells; however, the mechanism behind this defect is unclear. We now show that, in tumor-draining lymph node DCs, a large proportion of major histocompatibility complex class II (MHC-II) molecules retains the class II-associated invariant chain peptide (CLIP) fragment of the invariant chain bound to the MHC-II peptide binding groove due to reduced expression of the peptide editor H2-M and enhanced activity of the CLIP-generating proteinase cathepsin S. The net effect of this is that MHC-II molecules are unable to efficiently bind antigenic peptides.

View Article and Find Full Text PDF

Efficacy and safety of PD-1 blockade-activated neoantigen specific cellular therapy for advanced relapsed non-small cell lung cancer.

Cancer Immunol Immunother

January 2025

Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222002, China.

Background: Due to its strong immunogenicity and tumor specificity, neoplastic antigen has emerged as an immunotherapy target with wide therapeutic prospect and clinical application value. Anti-programmed death-1 (PD-1) antibodies reinvigorate T cell-mediated antitumor immunity. So, we conducted single-arm trial to assess the safety and efficacy of PD-1 blockade(Camrelizumab)-activated neoantigen specific cellular therapy (aNASCT) on advanced relapsed non-small lung cancer(NSCLC)(ClinicalTrials.

View Article and Find Full Text PDF

Targeting immune checkpoints on myeloid cells: current status and future directions.

Cancer Immunol Immunother

January 2025

Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.

Myeloid cells accumulate extensively in most tumors and play a critical role in immunosuppression of the tumor microenvironment (TME). Like T cells, myeloid cells also express immune checkpoint molecules, which induce the immunosuppressive phenotype of these cells. In this review, we summarize the tumor-promoting function and immune checkpoint expression of four types of myeloid cells: macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, which are the main components of the TME.

View Article and Find Full Text PDF

CircRNA-loaded DC vaccine in combination with low-dose gemcitabine induced potent anti-tumor immunity in pancreatic cancer model.

Cancer Immunol Immunother

January 2025

National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China.

Although promising, dendritic cell (DC) vaccines may not suffice to fully inhibit tumor progression alone, mainly due to the short expression time of the antigen in DC vaccines, immunosuppressive tumor microenvironment, and tumor antigenic modulation. Overcoming the limitations of DC vaccines is expected to further enhance their anti-tumor effects. In this study, we constructed a circRNA-loaded DC vaccine utilizing the inherent stability of circular RNA to enhance the expression level and duration of the antigen within the DC vaccine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!