The propagation of N photons in one dimensional waveguides coupled to M qubits is discussed, both in the strong and ultrastrong qubit-waveguide coupling. Special emphasis is placed on the characterisation of the nonlinear response and its linear limit for the scattered photons as a function of N, M, qubit inter distance and light-matter coupling. The quantum evolution is numerically solved via the matrix product states technique. The time evolutions for both the field and qubits are computed. The nonlinear character (as a function of N/M) depends on the computed observable. While perfect reflection is obtained for N/M≅1, photon-photon correlations are still resolved for ratios N/M=non-zero. Inter-qubit distance enhances the nonlinear response. Moving to the ultrastrong coupling regime, we observe that inelastic processes are robust against the number of qubits and that the qubit-qubit interaction mediated by the photons is qualitatively modified. The theory developed in this work models experiments in circuit QED, photonic crystals and dielectric waveguides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4fd00206g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!