Inhibition of Forkhead box protein M1 by thiostrepton increases chemosensitivity to doxorubicin in T-cell acute lymphoblastic leukemia.

Mol Med Rep

Department of Biochemistry and Molecular Biology, Key Laboratory of Tumour Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China.

Published: July 2015

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of blood malignancy, deriving from T-cell progenitors in the thymus, and comprises 10-15% of pediatric and 25% of adult primary ALL cases. Despite advances, 20% of pediatric and the majority of adult patients with T-ALL succumb to mortality from resistant or relapsed disease, and the survival rate for patients with resistant or relapsed T-ALL remains poor. Alterations in the expression of Forkhead box protein M1 (FoxM1) have been detected in several types of cancer, and the inhibition of FoxM1 has been investigated as therapeutic strategy in cancer. The present study investigated the effects of the inhibition of FoxM1 by thiostrepton in human T-ALL Jurkat cells. The cells were treated with different concentrations of thiostrepton, either alone or in combination with doxorubicin. Cell viability was measured using CCK-8 assays and the cell cycle distribution, apoptosis and cell-associated mean fluorescence intensity of intracellular doxorubicin were assessed using flow cytometric analysis. The mRNA and protein expression levels were detected by reverse transcription-quantitative polymerase chain reaction and western blot analyses. The inhibition of FoxM1 by thiostrepton significantly decreased the proliferation of the Jurkat cells proliferation in a time- and dose-dependent manner. Cell arrest at the G2/M phase, and apoptosis was significantly increased in the thiostrepton-treated Jurkat cells. Thiostrepton reduced the half maximal inhibitory concentration of doxorubicin in the Jurkat cells, and significantly enhanced the cytotoxicity of doxorubicin within the Jurkat cells by enhancing doxorubicin-induced apoptosis and increasing the accumulation of intracellular doxorubicin. Furthermore, the inhibition of FoxM1 by thiostrepton enhanced doxorubicin-induced apoptosis, possibly through a caspase-3-dependent pathway, and increased the accumulation of intracellular doxorubicin, possibly through downregulating the expression of glutathione S-transferase pi. Collectively, the results of the present study suggested that targeting FoxM1 with thiostrepton resulted in potent antileukemia activity and chemosensitizing effects in human T-ALL Jurkat cells.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2015.3469DOI Listing

Publication Analysis

Top Keywords

jurkat cells
24
inhibition foxm1
16
foxm1 thiostrepton
16
intracellular doxorubicin
12
forkhead box
8
box protein
8
t-cell acute
8
acute lymphoblastic
8
lymphoblastic leukemia
8
resistant relapsed
8

Similar Publications

Zinc Deficiency Exacerbates Lead-Induced Interleukin-2 Suppression by Regulating CREM Expression.

Int J Mol Sci

December 2024

Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.

Lead, a prevalent heavy metal, impairs the immune system by affecting T cell function. Similarly, zinc deficiency adversely affects T cells, with zinc deficiency and lead exposure being linked to reduced interleukin-2 (IL-2) production. Zinc deficiency has been associated with increased expression of the transcription factor CREM 100 kDa, which downregulates IL-2.

View Article and Find Full Text PDF

Background: Breast cancer is a leading cause of cancer-related mortality among women globally, with triple-negative breast cancer (TNBC) being particularly aggressive. Delphinidin (Dp), an anthocyanin monomer, has shown promising health benefits.

Objective: This study investigates the effects of Dp on TNBC and aims to elucidate its specific mechanisms of action.

View Article and Find Full Text PDF

New naphthalene-linked pyrazoline-thiazole hybrids as prominent antilung and antibreast cancer inhibitors.

Turk J Chem

November 2024

Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.

The epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2), pioneer members of the receptor tyrosine kinase subfamily, are frequently mutated and/or overexpressed in several types of human cancers, including nonsmall cell lung cancer (NSCLC) and breast cancer, which are leading causes of cancer-related deaths worldwide. EGFR and HER2-focused anti-NSCLC and antibreast cancer studies encouraged us to search for new potential agents. For this purpose, in the current work, naphthalene-linked pyrazoline-thiazole hybrids (- and -) were synthesized and examined for their antiproliferative effects on A549 NSCLC and MCF-7 breast cancer cell lines.

View Article and Find Full Text PDF

CD28 shapes T cell receptor signaling by regulating Lck dynamics and ZAP70 activation.

Front Immunol

January 2025

Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.

Introduction: T cell activation requires T cell receptor (TCR) engagement by its specific ligand. This interaction initiates a series of proximal events including tyrosine phosphorylation of the CD3 and TCRζ chains, recruitment, and activation of the protein tyrosine kinases Lck and ZAP70, followed by recruitment of adapter and signaling proteins. CD28 co-stimulation is also required to generate a functional immune response.

View Article and Find Full Text PDF

: A series of spiro-fused heterocyclic compounds containing cyclopropa[a]pyrrolizidine-2,3'-oxindole and 3-spiro[3-azabicyclo[3.1.0]-hexane]oxindole frameworks were synthesized and studied for their in vitro antiproliferative activity against human erythroleukemia (K562), cervical carcinoma (HeLa), acute T cell leukemia (Jurkat), melanoma (Sk-mel-2) and breast cancer (MCF-7) as well as mouse colon carcinoma (CT26) cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!