Crouzon syndrome is an autosomal dominant craniosynostosis syndrome caused by mutation in the fibroblast growth factor receptor 2 (FGFR-2). Numerous findings from animal studies imply a critical role for FGFRs in the regulation of skeletal development. Here, we report 2 unrelated patients with Crouzon syndrome accompanied by elbow deformity. Subsequently, we analyzed the sequence of the FGFR2 gene and found that both of the patients carried the Cys342Arg mutation. The findings suggest that the C342R mutation in FGFR2 may cause Crouzon syndrome and elbow deformity in Chinese patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SCS.0000000000001472 | DOI Listing |
Bone Res
January 2025
Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA.
Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and metaphyseal flaring of long bones. Many patients with CMD suffer from neurological symptoms.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
Ankyrin Repeat Domain-containing Protein 11 () is a causative gene for KBG syndrome, a significant risk factor for Cornelia de Lange syndrome (CdLS), and a highly confident autism spectrum disorder gene. Mutations of lead to developmental abnormalities in multiple organs/tissues including the brain, craniofacial and skeletal bones, and tooth structures with unknown mechanism(s). Here, we find that ANKRD11, via a short peptide fragment in its N-terminal region, binds to the cohesin complex with a high affinity, implicating why mutation can cause CdLS.
View Article and Find Full Text PDFBone Res
January 2025
Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France.
Gain-of-function mutations in fibroblast growth factor receptor (FGFR) genes lead to chondrodysplasia and craniosynostoses. FGFR signaling has a key role in the formation and repair of the craniofacial skeleton. Here, we analyzed the impact of Fgfr2- and Fgfr3-activating mutations on mandibular bone formation and endochondral bone repair after non-stabilized mandibular fractures in mouse models of Crouzon syndrome (Crz) and hypochondroplasia (Hch).
View Article and Find Full Text PDFJ Plast Surg Hand Surg
January 2025
Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Westville Campus University of KwaZulu-Natal, Durban, South
Background: Hemifacial microsomia (HFM) presentation includes gross distorted ramus, malposition temporomandibular joint, small glenoid fossa, distorted condyle and notch, malformed orbit, cupping ear or absent external ear, and facial nerve palsy. HFM is the second most prevalent congenital deformity of the face, with little literature from the South African population. This retrospective study elucidated the demographic characteristics and clinical presentations of HFM patients in a select South African population and compared it to the literature.
View Article and Find Full Text PDFJ Craniofac Surg
December 2024
Member of Sociedad Argentina de Ortodoncia, Member of International Society of Craneofacial Surgery, Member of Asociación Latinoamericana de Ortodoncia, Buenos Aires, Argentina.
Craniofacial syndromes present with exorbitism and airway obstruction as a result of upper and middle facial hypoplasia. Classical subcranial Lefort III (LF III) or monobloc distraction osteogenesis (DO) using an external craniofacial device is used to treat these deformities. These procedures are done during mixed dentition, in most cases, advancing an abnormal face, to a more normal position.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!