A pore-forming toxin requires a specific residue for its activity in membranes with particular physicochemical properties.

J Biol Chem

From the Department of Bioengineering, Graduate School of Engineering and Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan, the Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan

Published: April 2015

The physicochemical landscape of the bilayer modulates membrane protein function. Actinoporins are a family of potent hemolytic proteins from sea anemones acting at the membrane level. This family of cytolysins preferentially binds to target membranes containing sphingomyelin, where they form lytic pores giving rise to cell death. Although the cytolytic activity of the actinoporin fragaceatoxin C (FraC) is sensitive to vesicles made of various lipid compositions, it is far from clear how this toxin adjusts its mechanism of action to a broad range of physiochemical landscapes. Herein, we show that the conserved residue Phe-16 of FraC is critical for pore formation in cholesterol-rich membranes such as those of red blood cells. The interaction of a panel of muteins of Phe-16 with model membranes composed of raft-like lipid domains is inactivated in cholesterol-rich membranes but not in cholesterol-depleted membranes. These results indicate that actinoporins recognize different membrane environments, resulting in a wider repertoire of susceptible target membranes (and preys) for sea anemones. In addition, this study has unveiled promising candidates for the development of protein-based biosensors highly sensitive to the concentration of cholesterol within the membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409249PMC
http://dx.doi.org/10.1074/jbc.M114.615211DOI Listing

Publication Analysis

Top Keywords

sea anemones
8
target membranes
8
cholesterol-rich membranes
8
membranes
7
pore-forming toxin
4
toxin requires
4
requires specific
4
specific residue
4
residue activity
4
activity membranes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!