Aspergillus niger lipase immobilization by covalent binding on chitosan-coated magnetic nanoparticles (CMNP), obtained by one-step co-precipitation, was studied. Hydroxyl and amino groups of support were activated using glycidol and glutaraldehyde, respectively. Fourier transform infrared spectrometry, high-resolution transmission electron microscopy and thermogravimetric analysis confirmed reaction of these coupling agents with the enzyme and achievement of a successful immobilization. The derivatives showed activities of 309.5 ± 2.0 and 266.2 ± 2.8 U (g support)(-1) for the CMNP treated with glutaraldehyde and with glycidol, respectively. Immobilization enhanced the enzyme stability against changes of pH and temperature, compared to free lipase. Furthermore, the kinetic parameters K m and V max were determined for the free and immobilized enzyme. K m value quantified for enzyme immobilized by means of glutaraldehyde was 1.7 times lowers than for free lipase. High storage stability during 50 days was observed in the immobilized derivatives. Finally, immobilized derivatives retained above 80% of their initial activity after 15 hydrolytic cycles. The immobilized enzyme can be applied in various biotechnological processes involving magnetic separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-015-1385-8 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Food Engineering, Akdeniz University, 07058 Antalya, Turkey. Electronic address:
This study aimed to enhance inulinase production from agricultural biomass pretreated with deep eutectic solvents (DES) using Aspergillus niger A42 (ATCC 204447). Barley husk (BH), wheat bran (WB), and oat husk (OH) were selected as substrates and were pretreated using different molar ratios of choline chloride: glycerol (ChCl: Gly) and choline chloride: acetic acid (ChCl: AA). DES pretreatment was followed by dilute sulfuric acid hydrolysis.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
Silicone rubber (SiR) has a wide range of medical applications, but it lacks antimicrobial properties, leading to potential infection issues with related implants or medical devices. Most studies focus on adding anti-bacterial agents or surface modification, which usually result in composites with anti-bacterial properties, rather than synthesizing SiR with intrinsically antimicrobial performances. To tackle this issue, a double substituted bornyl-siloxane crosslinker (BC) is designed.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.
View Article and Find Full Text PDFBMC Biotechnol
January 2025
Faculty of Archaeology, South Valley University, Qena, Egypt.
The increasing demand for sustainable alternatives to conventional antifungal agents has prompted extensive research into the antifungal properties of plant essential oils (EOs). This study investigates the use of EOs mixture (Origanum vulgare, Moringa oleifera, and Cinnamomum verum) for controlling fungal deterioration in wall paintings at the archaeological Youssef Kamal Palace in Nag Hammadi, Egypt. Fungal isolates were collected from deteriorated wall paintings and identified using phenotypic and genotypic analyses.
View Article and Find Full Text PDFPharmaceutics
November 2024
College of Textile Science and Engineering (International Silk Institute), Zhejiang Sci-Tech University, Hangzhou 310018, China.
Background/objectives: The use of natural colourants is gaining attention due to their biocompatibility and functional benefits. This study introduces a different approach using turmeric ( L.) dye extract combined with chitosan to significantly enhance the antibacterial and UV-shielding properties of silk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!