A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hi-Jack: a novel computational framework for pathway-based inference of host-pathogen interactions. | LitMetric

Hi-Jack: a novel computational framework for pathway-based inference of host-pathogen interactions.

Bioinformatics

Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia.

Published: July 2015

Motivation: Pathogens infect their host and hijack the host machinery to produce more progeny pathogens. Obligate intracellular pathogens, in particular, require resources of the host to replicate. Therefore, infections by these pathogens lead to alterations in the metabolism of the host, shifting in favor of pathogen protein production. Some computational identification of mechanisms of host-pathogen interactions have been proposed, but it seems the problem has yet to be approached from the metabolite-hijacking angle.

Results: We propose a novel computational framework, Hi-Jack, for inferring pathway-based interactions between a host and a pathogen that relies on the idea of metabolite hijacking. Hi-Jack searches metabolic network data from hosts and pathogens, and identifies candidate reactions where hijacking occurs. A novel scoring function ranks candidate hijacked reactions and identifies pathways in the host that interact with pathways in the pathogen, as well as the associated frequent hijacked metabolites. We also describe host-pathogen interaction principles that can be used in the future for subsequent studies. Our case study on Mycobacterium tuberculosis (Mtb) revealed pathways in human-e.g. carbohydrate metabolism, lipids metabolism and pathways related to amino acids metabolism-that are likely to be hijacked by the pathogen. In addition, we report interesting potential pathway interconnections between human and Mtb such as linkage of human fatty acid biosynthesis with Mtb biosynthesis of unsaturated fatty acids, or linkage of human pentose phosphate pathway with lipopolysaccharide biosynthesis in Mtb.

Availability And Implementation: Datasets and codes are available at http://cloud.kaust.edu.sa/Pages/Hi-Jack.aspx

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btv138DOI Listing

Publication Analysis

Top Keywords

novel computational
8
computational framework
8
host-pathogen interactions
8
linkage human
8
host
6
pathogens
5
hi-jack novel
4
framework pathway-based
4
pathway-based inference
4
inference host-pathogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!