Targeted modification of plant genome is key for elucidating and manipulating gene functions in basic and applied plant research. The CRISPR (clustered regularly interspaced short palindromic repeats)/CRISPR-associated protein (Cas) technology is emerging as a powerful genome editing tool in diverse organisms. This technology utilizes an easily reprogrammable guide RNA (gRNA) to guide Streptococcus pyogenes Cas9 endonuclease to generate a DNA double-strand break (DSB) within an intended genomic sequence and subsequently stimulate chromosomal mutagenesis or homologous recombination near the DSB site through cellular DNA repair machineries. In this chapter, we describe the detailed procedure to design, construct, and evaluate dual gRNAs for plant codon-optimized Cas9 (pcoCas9)-mediated genome editing using Arabidopsis thaliana and Nicotiana benthamiana protoplasts as model cellular systems. We also discuss strategies to apply the CRISPR/Cas9 system to generating targeted genome modifications in whole plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-2444-8_12DOI Listing

Publication Analysis

Top Keywords

genome editing
12
plant genome
8
genome
5
targeted plant
4
editing crispr/cas9
4
crispr/cas9 technology
4
technology targeted
4
targeted modification
4
modification plant
4
genome key
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!