Potential roles of laccases on virulence of Heterobasidion annosum s.s.

Microb Pathog

Department of Forest Sciences, University of Helsinki, Helsinki, Finland; Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland; Department of Agricultural Biotechnology, Centers for Fungal Pathogenesis and Fungal Genetic Resources, Seoul National University, Seoul, South Korea. Electronic address:

Published: April 2015

Laccases, multi-copper-containing proteins, can catalyze the oxidation of phenolic substrates and have diverse functions such as a virulence factor in fungi. However, limited information can be found on the role of laccases in the interaction of Heterobasidion annosum s.s. to its host plant. Due to genome availability of the close-related species Heterobasidion irregulare, which contains 18 predicted laccase-encoding genes, phylogenetic analysis and gene expression profiling were performed. Eighteen laccase genes could be classified into 4 groups based on protein domains and phylogenetic analysis. However, there is no clear indication between phylogeny and domain compositions in laccases, and lifestyles of fungal species. The results of qRT-PCR showed that the expression of 8 laccase genes was highly up-regulated in Scots pine seedlings at 1 wpi. These data suggested that they might be involved in early stage of host infection. In addition, up-regulation of gene expression under glucose condition as a sole carbon source suggests that those laccases are not under carbon catabolite repression. Higher activities of laccase were observed in culture media containing cellulose, sucrose, or glucose compared to that of cellobiose as a sole carbon source. The highest mortality of Scots pine seedlings was observed when infected by H. annosum s.s. on extra carbon source as glucose. This was supported by the facts that glucose plays significant roles on up-regulation of laccase genes in planta and higher activity of laccase in H. annosum s.s.. Taking all together, laccases in H. annosum s.s. have diverse functions and a group of laccases may play a role during interactions with Scots pine seedlings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2015.03.004DOI Listing

Publication Analysis

Top Keywords

laccase genes
12
scots pine
12
pine seedlings
12
carbon source
12
heterobasidion annosum
8
diverse functions
8
phylogenetic analysis
8
gene expression
8
sole carbon
8
laccases
7

Similar Publications

Genome-wide identification, classification, and expression profiling of LAC gene family in sesame.

BMC Plant Biol

December 2024

Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.

Background: Laccases (LACs) are vital plant growth and development enzymes, participating in lignin biopolymerization and responding to stress. However, the role of LAC genes in plant development as well as stress tolerance, is still not well understood, particularly in sesame (Sesamum indicum L.), an important oilseed crop.

View Article and Find Full Text PDF

The mushroom is consumed worldwide and has high industrial value because of its rich content of bioactive compounds such as ergothioneine and eritadenine. Currently, mainstream artificial cultivation methods for this mushroom typically use synthetic logs. However, browning of the stem's interior (stem browning) has been observed during the cultivation in some strains.

View Article and Find Full Text PDF

Genome-wide analysis of the laccase gene family in Arachis hypogaea and functional characterization of AhLAC63 involved in lignin biosynthesis and abiotic stress.

Int J Biol Macromol

December 2024

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China. Electronic address:

Plant laccases (LACs) play a vital role in lignification and participate in multiple biotic/abiotic stress responses. However, little is known about their role in lignin deposition and stress resistance in cultivated peanut (Arachis hypogaea L.).

View Article and Find Full Text PDF

Precision Thermostability Predictions: Leveraging Machine Learning for Examining Laccases and Their Associated Genes.

Int J Mol Sci

December 2024

International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.

Laccases, multi-copper oxidases, play pivotal roles in the oxidation of a variety of substrates, impacting numerous biological functions and industrial processes. However, their industrial adoption has been limited by challenges in thermostability. This study employed advanced computational models, including random forest (RF) regressors and convolutional neural networks (CNNs), to predict and enhance the thermostability of laccases.

View Article and Find Full Text PDF

Genome-Wide Identification and Characterization of the Laccase Gene Family in and Its Potential Roles in Response to Salt and Drought Stresses.

Plants (Basel)

November 2024

Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China.

Laccase (, EC 1.10.3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!