The effect of the increased copy number of polyhydroxybutyrate (PHB) biosynthesis genes in pink-pigmented methylobacterium Methylobacterium extorquens G10 on properties of the biopolymer was studied. The activity of poly-3-hydroxybutyril-synthase (PHB-synthase) was shown to increase and the molecular weight of synthesized PHB decreases twofold (150 --> 79 kDa) after insertion of extra copies of phaC and phaCAB genes into cells of the producer strain, whereas the physicochemical properties of the plastic changed insignificantly. White mutant M. extorquens G10-W with disrupted synthesis of the carotenoid pigment (defect by the crtI gene, which codes for phytoene desaturase) was established to have the same rate of growth and level of PHB accumulation as the initial strain G10. The G10-W strain is a promising producer of PHB, with decreased expenses for purification and PHB biosynthesis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

methylobacterium extorquens
8
extorquens g10
8
producer strain
8
phb biosynthesis
8
phb
5
[genetic modification
4
modification methylobacterium
4
g10 producer
4
strain
4
strain polyhydroxybutyrate]
4

Similar Publications

The conversion of CO into methanol depicts one of the most promising emerging renewable routes for the chemical and biotech industry. Under this regard, native methylotrophs have a large potential for converting methanol into value-added products but require targeted engineering approaches to enhance their performances and to widen their product spectrum. Here we use a systems-based approach to analyze and engineer M.

View Article and Find Full Text PDF

Elucidating details of biology's selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterize () LanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, La.

View Article and Find Full Text PDF

Combined application of resveratrol and a ryegrass endophyte in PAH-contaminated soil remediation and its impact on soil microbial communities.

RSC Adv

October 2024

Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China

Article Synopsis
  • Certain plant endophytes have shown potential in breaking down organic pollutants, specifically polycyclic aromatic hydrocarbons (PAHs), but their effectiveness after culture and in real-world soil remediation is still uncertain.
  • A study found that resveratrol enhances the PAH degradation ability of an endophyte called C1 while having little effect on native soil bacteria, suggesting a selective boosting effect.
  • The combination of resveratrol and the endophyte C1 in contaminated soil resulted in significantly improved PAH removal rates, indicating a promising new bioremediation method that utilizes the interaction between plant-produced metabolites and endophytic bacteria.
View Article and Find Full Text PDF

Structure-driven development of a biomimetic rare earth artificial metalloprotein.

Proc Natl Acad Sci U S A

August 2024

Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801.

The 2011 discovery of the first rare earth-dependent enzyme in methylotrophic AM1 prompted intensive research toward understanding the unique chemistry at play in these systems. This enzyme, an alcohol dehydrogenase (ADH), features a La ion closely associated with redox-active coenzyme pyrroloquinoline quinone (PQQ) and is structurally homologous to the Ca-dependent ADH from the same organism. AM1 also produces a periplasmic PQQ-binding protein, PqqT, which we have now structurally characterized to 1.

View Article and Find Full Text PDF

Many bacteria secrete metallophores, low-molecular-weight organic compounds that bind ions with high selectivity and affinity, in order to access essential metals from the environment. Previous work has elucidated the structures and biosynthetic machinery of metallophores specific for iron, zinc, nickel, molybdenum, and copper. No physiologically relevant lanthanide-binding metallophore has been discovered despite the knowledge that lanthanide metals (Ln) have been revealed to be essential cofactors for certain alcohol dehydrogenases across a diverse range of phyla.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!