The dentate nucleus of the cerebellum may appear as hyperintense on unenhanced T1 magnetic resonance images (MRIs) of the brain. Recently, T1 signal hyperintensity has received attention owing to data on the association of this finding with the history of multiple injections of gadolinium-based contrast agents, specifically gadodiamide, in patients with multiple sclerosis and brain metastases. We conducted a retrospective study on patients with a meningioma who had routinely undergone follow-up enhanced MRI scans with gadodiamide. Across a time interval of 18 months (from January 2013 to July 2014), we identified 102 consecutive patients eligible for this study. A significant increase in T1 hyperintensity of the dentate nuclei of the cerebellum on nonenhanced scans was observed between the first and the last MRI in the group of patients with a history of at least 6 enhanced MRI scans (P < 0.01), whereas no differences were observed in the group with 1 to 5 enhanced MRI scans (P = 0.74). Further research is necessary to shed light on the mechanism of the T1 hyperintensity as well as on the histological and microstructural appearance of the dentate nucleus after multiple intravenous injections of gadodiamide. The finding raises the question of substantial dechelation of this agent in patients with normal renal function.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RLI.0000000000000154DOI Listing

Publication Analysis

Top Keywords

dentate nucleus
12
enhanced mri
12
mri scans
12
patients meningioma
8
magnetic resonance
8
patients
6
gadodiamide
4
gadodiamide dentate
4
hyperintensity
4
nucleus hyperintensity
4

Similar Publications

Comparative analysis of adenosine 1 receptor expression and function in hippocampal and hypothalamic neurons.

Inflamm Res

January 2025

Medical Faculty and University Hospital, Institute of Neural and Sensory Physiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.

Background: Adenosine, an ATP degradation product, is a sleep pressure factor. The adenosine 1 receptor (A1R) reports sleep need. Histaminergic neurons (HN) of the tuberomamillary nucleus (TMN) fire exclusively during wakefulness and promote arousal.

View Article and Find Full Text PDF

Dominance hierarchies are key to social organization in group-living species, requiring individuals to recognize their own and others' ranks. This is particularly complex for intermediate-ranking animals, who navigate interactions with higher- and lower-ranking individuals. Using in situ hybridization, we examined how the brains of intermediate-ranked mice in hierarchies respond to dominant and subordinate stimuli by labeling activity-induced immediate early genes and neuronal markers.

View Article and Find Full Text PDF

Quantitative evaluation of dynamic glymphatic activity in insomnia: A contrast-enhanced synthetic MRI study.

Sleep Med

January 2025

Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang, 330006, China; Intelligent Medical Imaging of Jiangxi Key Laboratory, 330006, Nanchang, China; School of Biomedical Engineering, National Graduate College for Engineers, Tsinghua University, 100084, Beijing, China. Electronic address:

Article Synopsis
  • The study investigates the connection between insomnia disorder (ID) and glymphatic circulation, utilizing dynamic synthetic magnetic resonance imaging (syMRI) on 32 insomnia patients and 10 healthy volunteers.
  • Results showed significant differences in T1 signal values in several brain areas, including the insula gray matter and hippocampal gray matter, between insomnia patients and the control group at various time points.
  • Statistical analyses indicated that time-varying T1 values in cerebral gray matter and the putamen also differed significantly between groups, suggesting potential glymphatic system involvement in insomnia.
View Article and Find Full Text PDF

The cerebellum, identified to be active during cognitive and social behavior, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cortical regions, yet formation and modulation of these pathways are not fully understood. Perineuronal nets (PNNs) respond to changes in local cellular activity and emerge during development. PNNs are implicated in learning and neurodevelopmental disorders, but their role in the CN during development is unknown.

View Article and Find Full Text PDF

The cerebellum is activated by noxious stimuli and pathological pain but its role in noxious information processing remains unknown. Here, we show that in mice, cutaneous noxious electrical stimuli induced noradrenaline (NA) release from locus coeruleus (LC) terminals in the cerebellar cortex. Bergmann glia (BG) accumulated these LC-NA signals by increasing intracellular calcium in an integrative manner ('flares').

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!