Highly efficient antibacterial surface grafted with a triclosan-decorated poly(N-hydroxyethylacrylamide) brush.

ACS Appl Mater Interfaces

†Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China.

Published: April 2015

This work presented a highly efficient antibacterial Ti-surface which was grafted with poly(N-hydroxyethylacrylamide) (PHEAA) brush and further decorated with triclosan (TCS). The modified surfaces were characterized using contact angle measurements, X-ray photoelectron spectroscopy, and attenuated total reflectance Fourier transform infrared. The antibacterial performance of the modified surfaces was evaluated using the Streptococcus mutans and Actinomyces naeslundii attachment test. The Ti surface with PHEAA brush (Ti-PHEAA) was able to resist the adhesion of the bacteria, while the TCS-decorated Ti surface (Ti-TCS) showed the capability of killing the bacteria adhered on the surface. As we coupled the TCS to the PHEAA brush, the surface showed highly efficient antibacterial performance due to the combination of the resistance to the bacteria adhesion and its activity of killing bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b01210DOI Listing

Publication Analysis

Top Keywords

highly efficient
12
efficient antibacterial
12
pheaa brush
12
modified surfaces
8
antibacterial performance
8
killing bacteria
8
surface
5
antibacterial
4
antibacterial surface
4
surface grafted
4

Similar Publications

Purpose Of Review: Increasing transplant access overall and particularly among historically underserved and marginalized patient groups is a shared goal nationwide. Patient challenges with psychosocial factors, such as social support and health literacy, are recognized as among the top reasons patients may not be referred, evaluated, or waitlisted, key steps along the pathway to transplantation. Yet referring providers' (e.

View Article and Find Full Text PDF

Sulfur-Doped Nickel Ferrite for Green Hydrogen at High Current Density.

Chem Asian J

January 2025

Charotar University of Science and Technology, Physical Science, P.D. Patel Institute of Applied Sciences, 388421, Changa, INDIA.

The primary obstacle in electrolyzing water is that prolonged large-current operation quickly degrades performance, making it difficult to achieve efficient and continuous hydrogen evolution at high current densities. This work prepared sulfur-doped nickel ferrite nanocomposites using the simple hydrothermal method to improve electrocatalytic green hydrogen production at high-current densities. X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used to analyze the crystalline structure, morphology, and chemical composition of the synthesized nanocomposites.

View Article and Find Full Text PDF

Metal chalcogenides have been extensively studied for thermoelectric applications. Among other metal chalcogenides, silver selenide (AgSe) is considered one of the most promising n-type semiconducting materials for thermoelectric applications due to its low band gap value, Seebeck coefficient, and superior power factor (PF) rendered at room temperature. However, one of the main drawbacks of using AgSe as a thermoelectric material on a large scale is the time-consuming physical methods to obtain them, and the need for high vacuum synthesis conditions as well as high-cost.

View Article and Find Full Text PDF

Design and Evaluation of 3D-Printed Lattice Structures as High Flow Rate Aerosol Filters.

ACS Appl Eng Mater

December 2024

Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.

Aerosol contamination presents significant challenges across various industries, ranging from healthcare to manufacturing. Over the past few years, open foam filters have gained prominence for their ability to efficiently capture particles while allowing reasonable airflow. In this work, we present the use of 3D-printed idealized open foam-like lattice structures as aerosol filtration media, leveraging advances in additive manufacturing to generate these highly tunable and modular filters.

View Article and Find Full Text PDF

Ferroptosis and sonodynamic therapy (SDT) are both promising therapeutic modalities, but their clinical application remains challenging due to the hypoxic tumor microenvironment and limited supply of polyunsaturated fatty acids. Developing an agent with oxygen-enhanced SDT and increased ferroptosis sensitivity is crucial for advancing tumor therapy. In this study, catalase (Cat) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) highly expressed 4T1 cells were constructed lentivirus transfection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!