Viruses attract increasing interest from environmental microbiologists seeking to understand their function and role in coral health. However, little is known about their main ecological traits within the coral holobiont. In this study, a quantitative and qualitative characterization of viral and bacterial communities was conducted on the mucus of seven different coral species of the Van Phong Bay (Vietnam). On average, the concentrations of viruses and bacteria were, respectively, 17- and twofold higher in the mucus than in the surrounding water. The examination of bacterial community composition also showed remarkable differences between mucus and water samples. The percentage of active respiring cells was nearly threefold higher in mucus (m = 24.8%) than in water (m = 8.6%). Interestingly, a positive and highly significant correlation was observed between the proportion of active cells and viral abundance in the mucus, suggesting that the metabolism of the bacterial associates is probably a strong determinant of the distribution of viruses within the coral holobiont. Overall, coral mucus, given its unique physicochemical characteristics and sticking properties, can be regarded as a highly selective biotope for abundant, diversified and specialized symbiotic microbial and viral organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1758-2229.12185 | DOI Listing |
Mar Environ Res
December 2024
Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, P.B, 11562, Egypt. Electronic address:
Although the symbiotic partnership between corals and algal endosymbionts has been extensively explored, interactions between corals, their algal endosymbionts and microbial associates are still less understood. Screening the response of natural microbial consortiums inside corals can aid in exploiting them as markers for dysbiosis interactions inside the coral holobiont. The coral microbiome includes archaea, bacteria, fungi, and viruses hypothesized to play a pivotal vital role in coral health and tolerance to heat stress condition via different physiological, biochemical, and molecular mechanisms.
View Article and Find Full Text PDFCommun Biol
December 2024
Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia.
Coral thermotolerance research has focused on the ability of coral holobionts to maximize withstanding thermal stress exposure. Yet, it's unclear whether thermal thresholds adjust across seasons or remain constant for a given species and location. Here, we assessed the thermal tolerance thresholds over time spanning the annual temperature variation in the Red Sea for Pocillopora verrucosa and Acropora spp.
View Article and Find Full Text PDFSymbiont genotype plays a vital role in the ability of a coral host to tolerate rising ocean temperatures, with some members of the family Symbiodiniaceae possessing more thermal tolerance than others. While existing studies on genetic structure in symbiont populations have focused on broader scales of 10-100 s of km, there is a noticeable gap in understanding the seascape genetics of coral symbionts at finer-yet ecologically and evolutionarily relevant-scales. Here, we mapped short reads from 271 holobiont genome libraries of individual colonies to protein coding genes from the chloroplast genome to identify patterns of symbiont population genetic structure.
View Article and Find Full Text PDFPeerJ
December 2024
Universidad del Magdalena, Santa Marta, Colombia.
The decline in populations in Colombian reefs has been mainly attributed to diseases outbreaks. The population size structure and prevalence of white pox and white band disease were evaluated in six localities of the Colombian Caribbean. Here, we aimed to isolate enteric bacteria and Vibrios from healthy and diseased coral mucus to relate its presence to the health status of .
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
We report the genome sequences of four sp. strains isolated from the octocoral maintained long term at an aquarium facility. Our analysis reveals the coding potential for versatile polysaccharide metabolism; Type II, III, IV, and VI secretion systems; and the biosynthesis of novel ribosomally synthesized and post-translationally modified peptides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!