There is a growing demand for renewable energy, and sugarcane is a promising bioenergy crop. In Brazil, the largest sugarcane producer in the world, sugarcane plantations are expanding into areas where severe droughts are common. Recent evidence has highlighted the role of miRNAs in regulating drought responses in several species, including sugarcane. This review summarizes the data from miRNA expression profiles observed in a wide array of experimental conditions using different sugarcane cultivars that differ in their tolerance to drought. We uncovered a complex regulation of sugarcane miRNAs in response to drought and discussed these data with the miRNA profiles observed in other plant species. The predicted miRNA targets revealed different transcription factors, proteins involved in tolerance to oxidative stress, cell modification, as well as hormone signaling. Some of these proteins might regulate sugarcane responses to drought, such as reduction of internode growth and shoot branching and increased leaf senescence. A better understanding on the regulatory network from miRNAs and their targets under drought stress has a great potential to contribute to sugarcane improvement, either as molecular markers as well as by using biotechnological approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337329 | PMC |
http://dx.doi.org/10.3389/fpls.2015.00058 | DOI Listing |
Cien Saude Colet
January 2025
Departamento de Saúde Coletiva, Laboratório de Saúde Ambiente e Trabalho do Instituto Aggeu Magalhães (Fiocruz/IAM). Av. Professor Moraes Rego s/n, Cidade Universitária. 50740-465 Recife PE Brasil.
The study analyzed the socio-environmental determination of health in five sugarcane-producing municipalities in Pernambuco. This participatory, qualitative research was conducted from January to August 2022. Workshops were held in the participating communities to build the Participatory Rural Diagnosis of protective and destructive processes of global, community, and individual socio-environmental health dimensions.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
Various metabolic and cell signaling processes impact the functions of sugarcane plant cells. MicroRNAs (miRNAs) play critical regulatory roles in enhancing yield and providing protection against various stressors. This study seeks to identify and partially characterize several novel miRNAs in sugarcane using tools, while also offering a preliminary assessment of their functions.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Agricultural Research Center(ARC), Sugar Crops Research Institute(SCRI), Giza, Egypt.
Background: Glyphosate is an extensively employed herbicide in agriculture, specifically for sugarcane cultivation. The situation is different with the extensive physiological and genetic effects exerted by this herbicide on a range of plant species, including sugarcane, whose model basis is still poorly characterized, although its primary mode of action, which acts on the EPSPS enzyme in the shikimic acid pathway, is completely elucidated. The current study was aimed at investigating the stability of glyphosate formulation, molecular interactions of glyphosate formulation with rbcL enzyme associated with chlorophyll metabolism, and its effects on varieties of sugarcane.
View Article and Find Full Text PDFSci Rep
January 2025
School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
This study aimed to explore the effect of anthocyanin-rich black sugarcane on milk production, plasma antioxidant capacity, and the storage period DPPH scavenging capacity of milk in lactating dairy cows. Sixteen lactating dairy cows were stratified and randomly assigned into two balanced dietary groups, namely Anthocyanin-rich black sugarcane (AS), and Napier grass (NG). The AS group demonstrated a significant decrease (p < 0.
View Article and Find Full Text PDFSci Rep
January 2025
School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X 54001, Durban, 4000, South Africa.
Declining soil health and productivity are key challenges faced by sugarcane small-scale growers in South Africa. Incorporating Vicia sativa and Vicia villosa as cover crops can improve soil health by enhancing nutrient-cycling enzyme activities and nitrogen (N) contributions while promoting the presence of beneficial bacteria in the rhizosphere. A greenhouse experiment was conducted to evaluate the chemical and biological inputs of V.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!