Background: It has been reported that Smilax china L. leaf (SCL) provided various biological functions owing to polyphenols. The objective of the current study was to assess the enhancing effect of processing methods and microbial conversions on phenolic acid and flavonoid content and radical scavenging capacity of SCL for potential applications of diverse food products.

Results: Targeted phenolic acid (chlorogenic acid) and flavonoids (piceid and quercetin) were identified in fresh SCL using liquid chromatography-mass spectrometry. The total amount of identified phenolic acid and flavonoids was highest in steamed SCL (12.70 ± 0.12 mg g(-1) on a dry matter basis, dmb). A substantial amount of chlorogenic acid (5.81 ± 0.16 mg g(-1) dmb), piceid (3.96 ± 0.04 mg g(-1) dmb) and quercetin (6.06 ± 0.12 mg g(-1) dmb) were quantified in SCL fermented by Bacillus species, roasted and steamed, respectively (P < 0.05). The oxygen radical absorbance capacity (ORAC) value was greater in microbial fermented SCL than in others, with the exception of Saccharomyces cerevisiae and Aspergillus oryzae. However, vitamin C equivalent antioxidant capacity (VCEAC) was highest in SCL fermented by Aspergillus oryzae.

Conclusion: Results from our study suggest that the microbial fermentation processing method could improve accessibility to extraction of phenolic acids and flavonoid content and radical scavenging capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.7160DOI Listing

Publication Analysis

Top Keywords

phenolic acid
16
acid flavonoids
12
radical scavenging
12
scavenging capacity
12
g-1 dmb
12
processing methods
8
smilax china
8
china leaf
8
flavonoid content
8
content radical
8

Similar Publications

Multiple sclerosis (MS) affects 2.8 million people worldwide. Although the cause is unknown, various risk factors might be involved.

View Article and Find Full Text PDF

Background: Brussels chicory affluent in phenolic acids could inhibit atherosclerosis; however, its effects on exercise performance and post-exercise recovery are unknown. We hypothesized that Brussels chicory could enhance exhaustive aerobic exercise performance and post-exercise recovery by promoting lactate oxidation.

Methods: This is a single-blind, randomized, placebo-controlled two-way cross-over trial involving 32 untrained college students (men 18) who consumed either Brussels chicory juice (100 g of Brussels chicory containing ~130 mg phenolic acids and 180 mL fresh milk) or placebo (180 mL fresh milk) for 7 days with a 2-week washout period.

View Article and Find Full Text PDF

Phenolic Acid and Flavonoid Content Analysis with Antioxidant Activity Assessment in Chinese Honey.

Molecules

January 2025

Bee Product Quality Supervision and Testing Center, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The nutritional value of honey is closely related to its components, which are highly influenced by the botanic origin. ( (Franch.) var.

View Article and Find Full Text PDF

Background: Tartary buckwheat is a plant recognized for its resistance to various environmental stresses. Due to its valuable source of phenolic compounds, is also characterized as a medicinal plant; therefore, the aim of this study was to investigate the drought stress for the levels of phenolic compounds in the morphological parts of the plant.

Methods: This experiment was conducted in 7 L pots under laboratory conditions.

View Article and Find Full Text PDF

As a crucial post-translational modification (PTM), protein ubiquitination mediates the breakdown of particular proteins, which plays a pivotal role in a large number of biological processes including plant growth, development, and stress response. The ubiquitin-proteasome system (UPS) consists of ubiquitin (Ub), ubiquitinase, deubiquitinating enzyme (DUB), and 26S proteasome mediates more than 80% of protein degradation for protein turnover in plants. For the ubiquitinases, including ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3), the FBK (F-box Kelch repeat protein) is an essential component of multi-subunit E3 ligase SCF (Skp1-Cullin 1-F-box) involved in the specific recognition of target proteins in the UPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!