Sodium-dependent glucose cotransporters (SGLTs) play an important role in glucose reabsorption in the kidney and have been identified as promising targets to treat diabetes. Because of the side effects like glucose and galactose malabsorption by targeting SGLT1, highly selective SGLT2 inhibitors are more promising in the treatment of diabetes. To understand the mechanism of selectivity, we conducted selectivity-based three-dimensional quantitative structure-activity relationship studies to highlight the structure requirements for highly selective SGLT2 inhibitors. The best comparative molecular field analysis and comparative molecular similarity indices analysis models showed the noncross-validated coefficient (r(2) ) of 0.967 and 0.943, respectively. The predicted correlation coefficients (r(2) pred ) of 0.974 and 0.938 validated the reliability and predictability of these models. Besides, homology models of SGLT2 and SGLT1 were also constructed to investigate the selective mechanism from structure-based perspective. Molecular dynamics simulation and binding free energy calculation were performed on the systems of a potent and selective compound interacting with SGLT2 and SGLT1 to compare the different binding modes. The simulation results showed that the stretch of the methylthio group on Met241 had an essential effect on the different binding modes between SGLT1 and SGLT2, which was consistent with the three-dimensional quantitative structure-activity relationship analysis. Hydrogen bond analysis and binding free energy calculation revealed that SGLT2 binding complex was more stable and favorable than SGLT1 complex, which was highly correlated with the experimental results. Our obtained results give useful information for the investigation of the inhibitors' selectivity between SGLT2 and SGLT1 and will help for further development of highly selective SGLT2 inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmr.2464DOI Listing

Publication Analysis

Top Keywords

highly selective
12
selective sglt2
12
sglt2 inhibitors
12
sglt2 sglt1
12
sodium-dependent glucose
8
glucose cotransporter
8
sglt2
8
three-dimensional quantitative
8
quantitative structure-activity
8
structure-activity relationship
8

Similar Publications

Anion-π Interactions on Functionalized Porous Aromatic Cages for Gold Recovery from Complex Aqueous with High Capacity.

Angew Chem Int Ed Engl

January 2025

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Chemistry, Renmin Street, 130024, Changchun, CHINA.

High capacity, selective recovery and separation of precious metals from complex aqueous solutions is essential but remains a challenge in practical applications. Here, we prepared a thiophene-modified aromatic porous organic cage (T-PAC) with high stability for precise recognition and recovery of gold. T-PAC exhibits an outstanding gold uptake capacity of up to 2260 mg/g with fast adsorption kinetics and high adsorption selectivity.

View Article and Find Full Text PDF

Introduction: 58 million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development.

View Article and Find Full Text PDF

Background: Trials conducted in highly selected populations have shown that type 2 diabetes (T2D) remission is possible, but the feasibility and acceptability of supporting remission in routine clinical practice remain uncertain.

Aim: We explored primary care professionals' perceptions and understandings of T2D remission and their views about supporting remission within routine clinical care.

Methods: Semi-structured interviews were conducted with 14 GPs and nine nurses working in Scottish general practices.

View Article and Find Full Text PDF

Highly sensitive surface-enhanced Raman scattering detection of adenosine triphosphate based on core-satellite assemblies.

Anal Methods

November 2017

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.

As an important small molecule, adenosine triphosphate (ATP) plays an important role in the regulation of cell metabolism and supplies energy for various biochemical reactions in organisms. We herein developed a sensitive surface-enhanced Raman scattering (SERS) biosensor for highly specific detection of ATP using core-satellite assemblies. To construct the aptamer-based biosensor, a known ATP binding aptamer was divided into two segments.

View Article and Find Full Text PDF

Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!