Oysters are sessile filter feeders that live in close association with abundant and diverse communities of microorganisms that form the oyster microbiota. In such an association, cellular and molecular mechanisms have evolved to maintain oyster homeostasis upon stressful conditions including infection and changing environments. We give here cellular and molecular insights into the Crassostrea gigas antimicrobial defense system with focus on antimicrobial peptides and proteins (AMPs). This review highlights the central role of the hemocytes in the modulation and control of oyster antimicrobial response. As vehicles for AMPs and other antimicrobial effectors, including reactive oxygen species (ROS), and together with epithelia, hemocytes provide the oyster with local defense reactions instead of systemic humoral ones. These reactions are largely based on phagocytosis but also, as recently described, on the extracellular release of antimicrobial histones (ETosis) which is triggered by ROS. Thus, ROS can signal danger and activate cellular responses in the oyster. From the current literature, AMP production/release could serve similar functions. We provide also new lights on the oyster genetic background that underlies a great diversity of AMP sequences but also an extraordinary individual polymorphism of AMP gene expression. We discuss here how this polymorphism could generate new immune functions, new pathogen resistances or support individual adaptation to environmental stresses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2015.02.040 | DOI Listing |
J Environ Manage
January 2025
Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, 45701, USA; Department of Biological Sciences, Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA. Electronic address:
Biofilms can cause biofouling, water quality deterioration, and transmission of infectious diseases. They are also responsible for microbiologically influenced corrosion (MIC) which can cause leaks, resulting in environmental disasters. A new disposable biofilm/MIC test kit was demonstrated to distinguish abiotic corrosion of carbon steel from MIC.
View Article and Find Full Text PDFAm J Clin Pathol
January 2025
Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
Objectives: Immune checkpoint inhibitors have revolutionized treatment of platinum-refractory advanced bladder cancer, offering hope where options are limited. Response varies, however, influenced by factors such as the tumor's immune microenvironment and prior therapy. Muscle-invasive bladder cancer (MIBC) is stratified into molecular subtypes, with distinct clinicopathologic features affecting prognosis and treatment.
View Article and Find Full Text PDFJ Interferon Cytokine Res
January 2025
Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
J Med Chem
January 2025
European Institute for Molecular Imaging (EIMI), University of Muenster, Roentgenstr. 16, 48149 Muenster, Germany.
The P2X4 receptor is implicated in various pathological conditions, including neuropathic pain and cancer. This study reports the development of 1,4-naphthodiazepinedione-based P2X4 receptor antagonists aimed at both therapeutic applications and potential use as PET tracers for imaging P2X4 receptor expression in cancer. Structure-activity relationship studies aided by docking studies and molecular dynamics simulations led to a series of compounds with potent P2X4 receptor antagonism, promising inhibition of interleukin-1β release in THP-1 cells and suitability for radiolabeling with fluorine-18.
View Article and Find Full Text PDFChem Rev
January 2025
Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States.
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!