Our aim in this study was to calculate Monte Carlo-based phantom scatter corrections of various radiochromic films for different solid phantoms for high-energy brachytherapy sources. Brachytherapy sources (60)Co, (137)Cs, (192)Ir, and (169)Yb and radiochromic films EBT, EBT2 (lot 020609 and lot 031109), RTQA, XRT, XRQA, and HS were investigated in this study. The solid phantom materials investigated were PMMA (polymethylmethacrylate), polystyrene, solid water, virtual water, plastic water, RW1, RW3, A150, and WE210. Monte Carlo-based user codes DOSRZnrc and FLURZnrc of the EGSnrc code system were employed in the present work. For the (60)Co source, the polystyrene, plastic water, solid water, virtual water, RW1, RW3, and WE210 phantoms were water equivalent for the investigated films, but showed distance-dependent values for XRT and XRQA films. For the (137)Cs and (192)Ir sources, the solid water, virtual water, RW1, RW3, and WE210 phantoms were water equivalent for the investigated films, but showed distance-dependent values for XRT and XRQA films. For these sources, the remaining phantoms showed distance-dependent values for all of the films investigated. For the (169)Yb source, all of the investigated phantoms showed distance-dependent values for the investigated films. This study suggests that radiochromic films demonstrate distance-dependent values, but the degree of dependence is related to the types of solid phantom and film. Hence, for brachytherapy dosimetry involving radiochromic films and solid phantom materials, phantom scatter corrections need to be applied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12194-015-0310-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!