Focused ultrasound transducer for thermal treatment.

Int J Hyperthermia

Graduate School of Biomedical Engineering, Tohoku University, Sendai , Japan.

Published: March 2015

Air-backed transducers have been employed for thermal ultrasonic treatment including both ablation and hyperthermia because the power efficiency rather than the bandwidth is a main concern, unlike a typical imaging transducer working in a pulse mode. The characteristic of an air-backed piezoelectric transducer with a matching layer is analysed, and the role and choice of the matching layer is discussed. An element size of a focused array transducer, appropriate for such thermal treatment, is then estimated, and the characteristic of a piezoceramic transducer element of such a size was numerically analysed using a finite element code. The characteristic of a piezocomposite transducer element is also numerically analysed and its suitability to such a therapeutic array transducer is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.3109/02656736.2015.1008059DOI Listing

Publication Analysis

Top Keywords

thermal treatment
8
matching layer
8
element size
8
array transducer
8
transducer element
8
numerically analysed
8
transducer
7
focused ultrasound
4
ultrasound transducer
4
transducer thermal
4

Similar Publications

This study investigates the properties of egg-free mayonnaise prepared using chia seed protein hydrolysate (CSPH) and pectin extracted from apple pomace (PA) as alternatives to egg, comparing it to traditional egg-based mayonnaise. Chia seed protein was hydrolyzed using Protamex and Bromelain enzymes, while apple pectin was extracted through acid hydrolysis at 90 °C. Four mayonnaise treatments were prepared: T1 (control: 6 % egg), T2 (4 % egg + 1 % CSPH + 1 % PA), T3 (2 % egg + 2 % CSPH + 2 % PA), and T4 (0 % egg + 3 % CSPH + 3 % PA).

View Article and Find Full Text PDF

Utilization of refuse-derived fuel in industrial applications: Insights from Uttar Pradesh, India.

Heliyon

January 2025

Interdisciplinary Research Center for Construction and Building Materials, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.

Urbanization and population growth in India have quickened, leading to an annual generation of around 62 million tonnes of municipal solid waste (MSW). Improper management of organic waste presents a major environmental problem due to air and water pollution, soil contamination and greenhouse gas production. This research aims to develop refuse-derived fuel (RDF) as a viable option, converting waste into a high-calorific energy carrier for industrial use.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis is a chronic autoimmune disease, progressively distinctive via cartilage destruction, auto-antibody production, severe joint pain, and synovial inflammation. Nanotechnology represents one of the utmost promising scientific technologies of the 21st century. Nanocarriers could be the key to unlocking its potential by encapsulating Rutin in targeted drug delivery systems, potentially for targeted Rheumatoid arthritis therapy.

View Article and Find Full Text PDF

Nanoporous organic polymers (NPOPs) have emerged as versatile materials with robust thermal stability, large surface area (up to 2500 m g), and customizable porosity, making them ideal candidates for advanced hydrogen (H) storage applications. This review provides a comprehensive analysis of various NPOPs, including covalent organic frameworks (COFs), hypercrosslinked polymers (HCLPs), conjugated microporous polymers (CMPs), and porous aromatic frameworks (POAFs). Notably, these materials demonstrate superior H storage capacities, achieving up to 10 wt% at cryogenic temperatures, which is essential for applying H as a clean energy carrier.

View Article and Find Full Text PDF

LiOH Additive Triggering Beneficial Aging Effect of SnO Nanocrystal Colloids for Efficient Wide-Bandgap Perovskite Solar Cells.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Xidian University, Xi'an 710071, PR China.

Commercial SnO nanocrystals used for producing electron transporting layers (ETLs) of perovskite solar cells (PSC) are prone to aggregation at room temperature and contain many structural defects. Herein, we report that the LiOH additive can simultaneously delay the aggregation and donate the beneficial aging effect to SnO nanocrystals. The resulting SnO ETLs show the desired characteristics, including a broadened absorption range, reduced defects, improved transporting properties, and decreased work function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!